Skip Nav Destination
Close Modal
Search Results for
iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2682 Search Results for
iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130585
EISBN: 978-1-62708-284-6
... Abstract This appendix presents an iron-carbon equilibrium diagram illustrating various phases a particular alloy of iron and carbon will go through when allowed to cool down to room temperature. iron-carbon equilibrium diagram Fig. A9.1 Iron-carbon equilibrium diagram from Metal...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730069
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses ferrous metals, including low-carbon steels, stainless steels, and cast irons. It also provides information on hardening and hardenability and the tempering process. hardening tempering ferrous metals hardenability Jominy end-quench testing WHILE...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240153
EISBN: 978-1-62708-251-8
... Abstract This chapter examines the isothermal phase transformations of the iron-carbide system. The discussion includes the formation of ferritic, eutectoid, hypoeutectoid, hypereutectoid, bainitic, and martensitic microstructures as well as their properties, composition, and metallurgy...
Abstract
This chapter examines the isothermal phase transformations of the iron-carbide system. The discussion includes the formation of ferritic, eutectoid, hypoeutectoid, hypereutectoid, bainitic, and martensitic microstructures as well as their properties, composition, and metallurgy. The use of time-temperature-transformation (TTT) diagrams in understanding the phase transformations and the changes in the isothermal transformation curves due to the addition of carbon and other alloying elements are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140001
EISBN: 978-1-62708-264-8
... Abstract Steels are over 95% Fe, so a good starting point for understanding steel is to study the nature of solid iron. This chapter provides information on the composition, phase transformation, and associated changes in the crystal structure of pure iron at varying temperatures...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140009
EISBN: 978-1-62708-264-8
... Abstract Steel is made by adding carbon to iron, producing a solid solution defined by its crystalline structure. This chapter discusses the effect of carbon composition and temperature on the types of structures, or phases, that form. Using detailed phase diagrams, it explains how low-carbon...
Abstract
Steel is made by adding carbon to iron, producing a solid solution defined by its crystalline structure. This chapter discusses the effect of carbon composition and temperature on the types of structures, or phases, that form. Using detailed phase diagrams, it explains how low-carbon (hypoeutectoid) and high-carbon (hypereutectoid) steels are made, how they are classified, and how they compare. It also describes eutectoid steels which, at 0.77 wt% C, form a separate class noted for its microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140213
EISBN: 978-1-62708-264-8
... Abstract This appendix includes two annotated iron-carbon (Fe-C) phase diagrams. One is a poster-size diagram showing iron-carbon phases up to 7 wt% C along with representative microstructures. The other diagram is close-up view showing the phases that occur from 0 to 1.2 wt% C. It also...
Abstract
This appendix includes two annotated iron-carbon (Fe-C) phase diagrams. One is a poster-size diagram showing iron-carbon phases up to 7 wt% C along with representative microstructures. The other diagram is close-up view showing the phases that occur from 0 to 1.2 wt% C. It also includes labels identifying the microconstituents that form in plain carbon steels under rapid quenching conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250013
EISBN: 978-1-62708-287-7
... in ironmaking, the life of ironmaking pioneer John Fritz, and the rapid increase in ironmaking for the railroads. anthracite coal charcoal iron ironmaking railroads Ironmaking commenced in the colonies as early as 1645 at the Saugus Iron Works in Massachusetts. This effort was never financially...
Abstract
This chapter is a chronological account of the development of ironmaking in colonial America from 1645 to 1870. The discussion covers the spread of ironmaking in many of the colonies in the northeast, canal building in Pennsylvania, the replacement of charcoal by anthracite coal in ironmaking, the life of ironmaking pioneer John Fritz, and the rapid increase in ironmaking for the railroads.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900031
EISBN: 978-1-62708-350-8
... Fig. 1 Typical nitrided case Fig. 2 Typical nitrided case structure showing the white layer (top), the diffusion zone, and the core below the diffusion zone. Source: Ref 1 Fig. 3 Schematic showing the nucleation of γ′- and ε-nitrides on iron. Source: Ref 2 Fig...
Abstract
Formation of the nitrided case begins through a series of nucleated growth areas on the steel surface. These nucleating growth areas will eventually become what is known as the compound layer or, more commonly, the white layer. This chapter discusses the influence of carbon on the compound zone. It explains how to control and calculate compound zone thickness. Compound zone thickness can be controlled by dilution, the two-stage Floe process, or by ion nitriding. The chapter describes the factors affecting surface case formation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320103
EISBN: 978-1-62708-332-4
... Abstract This chapter covers mechanical properties, microstructures, chemical compositions, manufacturing processes, and engineering of gating practices for several applications of gray, white, and alloyed cast irons. It begins with a description of material standards, followed by a section...
Abstract
This chapter covers mechanical properties, microstructures, chemical compositions, manufacturing processes, and engineering of gating practices for several applications of gray, white, and alloyed cast irons. It begins with a description of material standards, followed by a section providing information on the practice of stress relieving. Next, the chapter details various ways of eliminating slag entrainment while designing gating and venting systems. Several factors related to the establishment of the optimum pouring rate and time are then covered. Further, the chapter discusses the technology of unalloyed or low-alloyed gray iron castings and white iron and high-alloyed cast irons. Finally, it describes the casting defects that are associated with cast iron and the processes involved in solving these defects. The article includes a number of figures illustrating the topics discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320157
EISBN: 978-1-62708-332-4
... Abstract Malleable iron has unique properties that justify its application in the metal working industry. This chapter discusses the advantages, limitations, and mechanical properties of malleable iron; provides a description of the malleabilization process; and presents manufacturing...
Abstract
Malleable iron has unique properties that justify its application in the metal working industry. This chapter discusses the advantages, limitations, and mechanical properties of malleable iron; provides a description of the malleabilization process; and presents manufacturing guidelines for malleable iron castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320163
EISBN: 978-1-62708-332-4
... Abstract Ductile iron has far superior mechanical properties compared to gray iron as well as significantly improved castability and attractive cost savings compared to cast steel. This chapter begins with information on graphite morphology and matrix type. It then discusses the advantages...
Abstract
Ductile iron has far superior mechanical properties compared to gray iron as well as significantly improved castability and attractive cost savings compared to cast steel. This chapter begins with information on graphite morphology and matrix type. It then discusses the advantages and applications of ductile iron. Next, the effects of various factors on the grades, chemistry, matrix, and mechanical properties of ductile iron are covered. This is followed by a section detailing the ductile iron treatment methods and the quality control methods used. Guidelines for gating and feeder design are then provided. Further, the chapter addresses the technology of ductile iron castings, including the performance and geometric attributes, molding and core-making processes used, material grades, mechanical properties, and chemical compositions of a few applications. Finally, it describes ductile iron casting defects and presents practical cases of problem-solving.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320195
EISBN: 978-1-62708-332-4
... Abstract Unlike conventional quench and temper heat treatment, austempering is an iron and steel heat-treatment process that enhances mechanical properties through the isothermal transformation of austenite with a minimum amount of quenching stresses. This chapter begins with a discussion...
Abstract
Unlike conventional quench and temper heat treatment, austempering is an iron and steel heat-treatment process that enhances mechanical properties through the isothermal transformation of austenite with a minimum amount of quenching stresses. This chapter begins with a discussion of austemperability requirements. Then outlines of austenitizing and austempering cycles and resultant microstructures are presented. This is followed by sections discussing the mechanical properties, advantages, limitations, machinability, process variants, and applications of austempered ductile iron (ADI). Information on the growth of premachined ADI components is also provided. Further, the chapter describes two slightly different systems for austempering: atmospheric-salt and salt-salt systems. Finally, it presents general guidelines for component designers, casting manufacturers, and heat treaters to apply ADI more widely and with improved success.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320207
EISBN: 978-1-62708-332-4
... Abstract Compacted graphite iron (GCI) is a cast iron grade that is engineered through graphite morphology modifications to achieve a combination of thermal and mechanical properties that are in between those of flake graphite iron and ductile iron. This chapter discusses the advantages...
Abstract
Compacted graphite iron (GCI) is a cast iron grade that is engineered through graphite morphology modifications to achieve a combination of thermal and mechanical properties that are in between those of flake graphite iron and ductile iron. This chapter discusses the advantages of compacted graphite iron over gray iron and ductile iron. It presents examples of low- and high-frequency thermal cycling, both of which affect the thermal stresses that castings are exposed to during temperature fluctations. Information on optimum carbon and silicon ranges as well as mechanical property standards for CGI are provided. The chapter describes the critical factors that control CGI and discusses methods of CGI manufacturing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320305
EISBN: 978-1-62708-332-4
... Abstract Iron and steel have been the most useful materials to meet the needs of several industries for many decades. Each iron and steel alloy offers unique attributes that make them the best choice for an application. This chapter provides an overview of each ferrous alloy—gray iron...
Abstract
Iron and steel have been the most useful materials to meet the needs of several industries for many decades. Each iron and steel alloy offers unique attributes that make them the best choice for an application. This chapter provides an overview of each ferrous alloy—gray iron, malleable iron, compacted graphite iron (CGI), ductile iron, austempered ductile iron (ADI), and carbon steel and low-alloy steel; its versatile attributes; and its individual applications. A large section of the chapter covers the impact of electric vehicles on the future of the iron and steel castings industry, including discussion on electric vehicle categories and weights; impact of center of gravity on stability and steering; lightweighting incentives; and engineering for improved suspension.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850533
EISBN: 978-1-62708-260-0
... Abstract This appendix lists copper-containing macroetchants that are used on iron and steel. iron macroetchants steel Metallography Principles and Practice George F. Vander Voort, p 533-535 DOI: 10.31399/asm.tb.mpp.t67850533 Copyright © 1999 ASM International® All rights reserved...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320005
EISBN: 978-1-62708-347-8
... Fig. 2.1 Idealized cooling curve for pure iron Fig. 2.2 Crystal structure of iron. (a) Body-centered cubic (alpha and delta iron). (b) Face-centered cubic (gamma iron) Fig. 2.3 Iron-carbon phase diagram Fig. 2.4 Phase diagram for carbon steels Fig. 2.5...
Abstract
The properties of steel are affected markedly as the percentage of carbon varies. This chapter describes the properties of alloys of iron and carbon, including a review of the iron-carbon phase diagram and, in particular, the portion of the diagram relevant to carbon steels. It addresses the processes involved in the transformation (decomposition) of austenite to achieve various microstructures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
...Definition of phases, microconstituents and critical temperatures in steels Table 2-1 Definition of phases, microconstituents and critical temperatures in steels Term Definition Austenite Designated by γ. Face-centered cubic iron with elements such as carbon and manganese dissolved...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320003
EISBN: 978-1-62708-332-4
... Abstract This chapter provides a brief overview of iron and steel manufacturing and the major equipment involved in the process as well as identifying where casting fits into the overall process. In addition, it provides an overview of cast iron manufacturing, including the processes involved...
Abstract
This chapter provides a brief overview of iron and steel manufacturing and the major equipment involved in the process as well as identifying where casting fits into the overall process. In addition, it provides an overview of cast iron manufacturing, including the processes involved in converting pig iron into cast iron and steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.9781627083324
EISBN: 978-1-62708-332-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060247
EISBN: 978-1-62708-261-7
... Abstract The commercial relevance of cast irons is best understood in the context of the iron-carbon phase diagram, where their composition places them near the eutectic point, which sheds light on why they melt at lower temperatures than steel and why they can be cast into more intricate...
Abstract
The commercial relevance of cast irons is best understood in the context of the iron-carbon phase diagram, where their composition places them near the eutectic point, which sheds light on why they melt at lower temperatures than steel and why they can be cast into more intricate shapes. This chapter examines these unique properties and how they are derived. It begins by describing the basic metallurgy of cast iron, focusing on the eutectic reaction. It explains how to control the reaction and thus properties of cast iron by overcooling and inoculation. The chapter also discusses composition, microstructure, heat treatments, and the classification and casting characteristics of white, gray, ductile, malleable, compacted graphite, and special cast irons.
1