Skip Nav Destination
Close Modal
Search Results for
ion implantation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 77 Search Results for
ion implantation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
... protective linings barrier protection chemical inhibition galvanic protection surface preparation inspection quality assurance electroplating electroless plating hot dipping thermal spraying cladding pack cementation vapor deposition ion implantation laser processing COATINGS are the most...
Abstract
Organic coatings (paints and plastic or rubber linings), metallic coatings, and nonmetallic inorganic coatings (conversion coatings, cements, ceramics, and glasses) are used in applications requiring corrosion protection. These coatings and linings may protect substrates by three basic mechanisms: barrier protection, chemical inhibition, and galvanic (sacrificial) protection. This chapter begins with a section on organic coating and linings, providing a detailed account of the steps involved in the coating process, namely, design and selection, surface preparation, application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation, and laser processing. The last section focuses on nonmetallic inorganic coatings including ceramic coating materials, conversion coatings, and anodized coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
...Abstract Abstract Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350095
EISBN: 978-1-62708-315-7
... cementation. The chapter also covers ion implantation and laser alloying. anodizing conversion coating diffusion coating pack cementation SURFACE TREATMENTS that change the surface chemistry of a metal or alloy, but that do not involve intentional buildup or increase in part dimension, include...
Abstract
This chapter provides practical information on surface treatments that work by altering the surface chemistry of metals and alloys. It discusses the use of phosphate and chromate conversion coatings as well as anodizing, steam oxidation, diffusion coatings, and pack cementation. The chapter also covers ion implantation and laser alloying.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120085
EISBN: 978-1-62708-269-3
... is important. Dissolved titanium and the active fluoride ion make it impossible to use glass electrodes for pH measurements. Indicator paper and colorimetry are the most satisfactory methods for measuring in the degreasing and chemical immersion baths, which are held in the pH range from 5 to 7. The pickling...
Abstract
Cleaning procedures serve to remove scale, tarnish films, and other contaminants that form or are otherwise deposited on the surface of titanium during processing operations such as hot working and heat treatment. This chapter explains what makes titanium susceptible to the formation of scale and how it can be removed via belt grinding, abrasive blasting, and molten salt descaling baths. It also discusses the role of acid pickling, barrel finishing, polishing, and buffing as well as the use of chemical conversion coatings and protective platings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... nickel-phosphorus plating, ferritic nitrocarburizing, sulfurizing, and spark hardening Fig. 16 Compares the wear, scuffing, and spalling resistance of sheet-metal dies coated by the following surface-hardening processes: uncoated, nitrided, borided, nitrogen ion implanted, chrome plated, sulfurized...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
... Ion implantation 200–400, best <250 for N Line of sight Usually N (B,C) Wear resistance for tools, dies, etc. Effect much deeper than original implantation depth. Precise area treatment, excellent process control Ion plating, ARE RT–0.7 T m of coating. Best at elevated temperatures...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350195
EISBN: 978-1-62708-315-7
... Ion implantation for improved wear resistance of alloy tool steels and chrome-plated parts Anodizing plus PTFE seal for nonstick and wear resistance with aluminum alloy parts Die Casting For die casting, consider: Nitriding for H-series tool steels Physical vapor deposition (PVD...
Abstract
This chapter provides helpful guidelines for selecting a surface treatment for a given application. It identifies important design factors and applicable treatments for common design scenarios, materials, and operating conditions. It explains why heat treatments and finishing operations may be required before or after processing and how to estimate or predict coating thickness, case depth, hardness, and the likelihood of distortion. It also addresses related issues and considerations such as part handling and fixturing, surface preparation and cleaning requirements, processability, aesthetics, and the influence of design features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
... by such processes as plating, cladding, nitriding, ion implantation, carburizing, and hot dip galvanizing, this book is limited to only those alloying processes that affect the bulk of the material, while surface modification is discussed in other ASM publications. This book, however, does cover the addition...
Abstract
This article discusses the general purpose of alloying and identifies some of the material properties and behaviors that can be improved by adding various elements to the base metal. It explains how alloying can make metals stronger and more resistant to corrosion and wear as well as easier to cast, weld, form, and machine. It also discusses some of the alloying techniques that have been developed to address problems stemming from dissimilarities between the base metal and alloying or inoculate material.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350001
EISBN: 978-1-62708-315-7
...) siliconizing Improved oxidation resistance Boronizing (boriding) Improved wear resistance, oxidative wear, and surface fatigue Ion implantation Improved friction and wear resistance for a variety of substrates Laser alloying Improved wear resistance Adding a surface layer or coating...
Abstract
This chapter begins with a brief review of the different types of surface treatments and coatings used in industry and their effect on properties and performance. It then discusses the importance of corrosion and wear treatments and the consequences of failing to properly implement them in critical industries such as mining, energy production, transportation, and mineral and chemical processing. The chapter also describes basic approaches to dealing with corrosion and wear in steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110335
EISBN: 978-1-62708-247-1
... tomography and 3D analytics is likely to increase in semiconductor failure analysis and characterization. Silicon amorphization from ion implantation is a known artifact from FIB sample preparation. The most common method to mitigate amorphization [50] is to use a low energy FIB probe [51...
Abstract
With the commercialization of heavier and lighter ion beams, adoption of focused ion beam (FIB) use for analysis of challenging regions of interest (ROI) has grown. In this chapter, the authors focus on highlighting commercially available and complementary FIB technologies and their implementation challenges and application trends.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
... but not as well as the titanium-palladium alloy. Surface Treatment Precious metals, such as platinum and palladium, have been ion plated, ion implanted, or thermal diffused into titanium alloy surfaces to achieve improved resistance to reducing acids. This approach has not been used commercially...
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
...–20 0.1–0.8 90–93 (VC) Average No 870–1040 1600–1900 Liquid Atmosphere 10–20 No Reheat treatment Ion implantation 0.1–1 0.004–0.04 80–90 (N) Excellent Yes (beam) No (plasma source) Usually <150 Usually <300 10 –7 –3 × 10 –5 10 –6 –2 × 10 –4 1–8 No No IBAD 0.1–10...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090333
EISBN: 978-1-62708-266-2
... thus depends on alloy composition. The amorphous alloys can be prepared by various methods, including melt spinning, sputter deposition, mechanical alloying, electrodeposition, electroless deposition, and ion implantation. Mechanical alloying forms powders, and the other methods form amorphous...
Abstract
Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly passivating elements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.9781627083157
EISBN: 978-1-62708-315-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110153
EISBN: 978-1-62708-247-1
... requirements. Thinning of the substrates can be accomplished by flat lapping, laser assisted chemical etch, plasma reactive ion etch, and CNC based milling and polishing. The article discusses the general characteristics, key principles, advantages, and disadvantages of these processes. It also contains case...
Abstract
The need for precise targeted interactive surgery on boards or modules is the main driver of backside preparation technology. This article assists the analyst in making decisions on backside thinning and polishing requirements. Thinning of the substrates can be accomplished by flat lapping, laser assisted chemical etch, plasma reactive ion etch, and CNC based milling and polishing. The article discusses the general characteristics, key principles, advantages, and disadvantages of these processes. It also contains case studies that illustrate the application of these processes to ceramic cavity devices, injection molded parts, and ball grid arrays.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
... cladding ( Ref 95 ), thermal spraying ( Ref 96 ), and cold spraying ( Ref 97 ). The preparation methods for HEA films mainly include magnetron sputtering ( Ref 98 , 99 ), plasma-based ion implantation ( Ref 100 ), and electrochemical deposition ( Ref 101 ). 1.5 Applications of High-Entropy Alloys...
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300363
EISBN: 978-1-62708-323-2
... into the mechanisms of cell neurons due to the presence of metal particles or metal ions. Some researchers are studying the effects of rubbing on biomaterials by investigating changes to DNA and RNA after rubbing; others are assessing the effect of chromium-cobalt and nickel (from metal-on-metal implants...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120345
EISBN: 978-1-62708-269-3
... 10.1016/B978-0-08-006564-9.50015-4 • Sioshansi P. , Improving the Properties of Titanium Alloys by Ion Implantation , J. Met. , Vol 42 ( No. 3 ), 1990 , p 30 – 31 10.1007/BF03220891 • Surface Treatment of Titanium: A Designer’s and User’s Handbook , brochure, The Titanium...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000101
EISBN: 978-1-62708-312-6
.... This type of surface modification is very attractive because of its low cost in comparison to other methods, such as chrome plating, ion implantation, laser processing, and so on. As pointed out earlier, compositional changes on the surface of a material, for a few atomic layers, are normal for any alloy...