Skip Nav Destination
Close Modal
Search Results for
internal energy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1017 Search Results for
internal energy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Fig. 2.2 The internal energy (ΔU) of monatomic ideal gases. (a) Gas at constant temperature ( T ) and pressure ( P ). The change in energy ( Q ) and temperature according to heating at (b) constant pressure and (c) constant volume.
More
Image
Published: 01 December 2003
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320013
EISBN: 978-1-62708-357-7
... Abstract This chapter describes the basics of energy and entropy and “free energy.” Fundamentals of internal energy U , the enthalpy H , entropy S , free energies G , and F of a substance are presented. The chapter also presents the thermal vibration model to promote a better...
Abstract
This chapter describes the basics of energy and entropy and “free energy.” Fundamentals of internal energy U , the enthalpy H , entropy S , free energies G , and F of a substance are presented. The chapter also presents the thermal vibration model to promote a better understanding of the U , S , and F of the crystal. It covers basic concepts of thermodynamics of magnetic transition and discusses the role and the meaning of magnetic transition in iron and steel. The chapter concludes with a general discussion on an amorphous phase from a thermodynamic viewpoint.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420041
EISBN: 978-1-62708-310-2
...) of a system is called its internal energy, E . Internal energy is characterized solely by the state of the system. A thermodynamic system that undergoes no interchange of mass (material) with its surroundings is called a closed system. A closed system, however, can interchange energy with its surroundings...
Abstract
This chapter explains how the principles of chemical thermodynamics are used in the construction and interpretation of phase diagrams. After a brief review of the laws of thermodynamics, it describes the concept of Gibbs free energy and its application to transformations that occur in single-component and binary solid solutions. It then examines the relationship between the free energy of a solution and the chemical potentials of the individual components. It also explains how to account for the heat of mixing using quasi-chemical models, discusses the effect of interatomic bond energies and chemical potentials, and shows how the equilibrium state of an alloy can be obtained from free-energy curves.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440243
EISBN: 978-1-62708-352-2
... and Symbols A A BGA c C CSP CTE DCA DNL E F G G H HAZ g h K K k M MEMS MCM ppm P PADS PCB PTFE Q R RH atomic weight area ball grid array crack length concentration chip-scale package coefficient of thermal (linear) expansion; see also direct chip attach dip-and-look test internal energy or Young s modulus...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240053
EISBN: 978-1-62708-251-8
..., and as it becomes more negative, the driving force increases. The following develops these concepts in a little more detail. The internal energy, E , of a system (e.g., an alloy) is made up of two parts: the kinetic energy, which is due to atomic vibrations of the metallic lattice, and the potential energy...
Abstract
This chapter provides a short introduction to phase transformations, namely, the liquid-to-solid phase transformations that occur during solidification and the solid-to-solid transformations that are important in processing, such as heat treatment. It also introduces the concept of free energy that governs whether or not a phase transformation is possible, and then the kinetic considerations that determine the rate at which transformations take place. The chapter also describes important solid-state transformations such as spinodal decomposition and martensitic transformation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420015
EISBN: 978-1-62708-310-2
... these concepts in a little more detail. The internal energy, E , of a system (e.g., an alloy) is made up of two parts: the kinetic energy that is due to atomic vibrations of the metallic lattice, and the potential energy that is a function of the bond strengths. The internal energy can also be thought...
Abstract
This chapter describes the physical characteristics, properties, and behaviors of solid solutions under equilibrium conditions. It begins with a review of a single-component pure metal system and its unary phase diagram. It then examines the solid solution formed by copper and nickel atoms. It discusses the difference between interstitial and substitutional solid solutions and the factors that determine the type of solution that two metals are likely to form. It also addresses the development of intermediate phases, the role of free energy, transformation kinetics, liquid-to-solid and solid-state phase transformations, and the allotropic nature of metals.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230105
EISBN: 978-1-62708-351-5
... atmospheres owing to the internal formation of high-pressure steam. The product is a completely useless metal sponge. Hydrogen can combine with graphite that may be a part of internal furnace accessories such as sensors or fixtures to form methane, which will carburize steel. Carbon monoxide reduces...
Abstract
This chapter discusses joining atmospheres that are used for brazing, along with their advantages and disadvantages. It discusses the processes, advantages, and disadvantages of chemical fluxing, self-fluxing, and fluxless brazing. Information on stop-off compounds that are considered as the antithesis of fluxes is also provided.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440103
EISBN: 978-1-62708-352-2
... of the strength of a metal-to-oxygen chemical bond is given by the change in the Gibbs free energy that occurs when that metal reacts to form the oxide, as detailed in Appendix A3.1 . Here, it is noted that the Gibbs free energy, G , is an important thermodynamic function in chemistry because incremental...
Abstract
Materials used in joining, whether solders, fluxes, or atmospheres, are becoming increasingly subjected to restrictions on the grounds of health, safety, and pollution concerns. These regulations can limit the choice of materials and processes that are deemed acceptable for industrial use. The chapter addresses this issue with a focus on soldering fluxes. The chapter also describes factors related to soldering under a protective atmosphere, provides information on chemical fluxes for soldering of various metals, and discusses the processes involved in fluxless soldering processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430017
EISBN: 978-1-62708-253-2
... 40% of electricity produced worldwide is still from coal-based thermal power plants. The top three coal-consuming countries are China, the United States, and India, together accounting for more than 70% of the total coal consumption in the world. According to the International Energy Outlook 2016...
Abstract
Coal-based thermal power plants play a major role in the welfare of many nations and the overall global economy. This chapter describes the basic equipment requirements and operating principles of thermal power plants, particularly subcritical, supercritical, and ultra-supercritical types.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860001
EISBN: 978-1-62708-348-5
... preferred over pressure, which is a negative stress. Thus, (1.13) B T = V ( ∂ σ / ∂ V ) T Some useful relationships result from the differential thermodynamic relationships for the internal energy, U , and the Helmholtz free energy, F : (1.14) d U = T d S − P d...
Abstract
Many scientific-technological advances depend critically on solid-state elastic properties, their magnitudes, and their responses to variables like stress and temperature. This chapter provides the definitions and descriptions of elastic constants and emphasizes five aspects of engineering-material solid-state elastic constants: general properties; interrelationships; relationships, especially thermodynamic to other physical properties; changes during cooling from ambient to near-zero temperature; and near-zero-temperature behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240117
EISBN: 978-1-62708-251-8
... activation energy needed to transform the material to a lower energy state. At elevated temperatures, the activation energy is provided by an increase in thermal energy. As the internal lattice strains are relieved during annealing, the strength decreases while the ductility increases. The rate of diffusion...
Abstract
Annealing, a heat treatment process, is used to soften metals that have been hardened by cold working. This chapter discusses the following three distinct processes that can occur during annealing: recovery, recrystallization, and grain growth. The types of processes that occur during recovery are the annihilation of excess point defects, the rearrangement of dislocations into lower-energy configurations, and the formation of subgrains that grow and interlock into sub-boundaries. The article also discusses the main factors that affect recrystallization. They are temperature and time; degree of cold work; purity of the metal; original grain size; and temperature of deformation. The types of grain growth discussed include normal or continuous grain growth and abnormal or discontinuous grain growth.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040001
EISBN: 978-1-62708-428-4
... Spray Technology , ASM International , 2013 10.31399/asm.hb.v05a.9781627081719 [7] Handwicke C. and Lau Y.C. , Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review , Journal of Thermal Spray Technology , Vol 22 (No. 5 ), 2013 , p 564 – 576...
Abstract
This article provides a high-level overview of thermal spray technologies and their applications and benefits. It is intended to educate members of government, industry, and academia to the benefits of thermal spray technology. The article describes the value of thermal spray technology with examples of application success stories. A few applications critical to thermal spray and market growth are briefly discussed. The article also summarizes the key research areas in thermal spray technology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240017
EISBN: 978-1-62708-251-8
..., they will merge to form a row of vacancies. These types of interactions occur because they reduce the internal energy of the system. When a dislocation becomes pinned by an obstacle and is immobile, it is termed a sessile dislocation. A dislocation that is not impeded and can move through the lattice is called...
Abstract
In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion on the causes, nature, and impact of these defects in metals. It also describes the mechanisms that cause plastic deformation in metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... Abstract This appendix contains abbreviations and symbols related to aluminum alloy castings. aluminum alloy castings aluminum alloys symbols Aluminum Alloy Castings: Properties, Processes, and Applications Copyright © 2004 ASM International® J. Gilbert Kaufman and Elwin L. Rooy All...
Book Chapter
Series: ASM Technical Books
Publisher: ASM Inte