Skip Nav Destination
Close Modal
Search Results for
intergranular fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 266 Search Results for
intergranular fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Environmentally-Induced Failures
> Fatigue and Fracture<subtitle>Understanding the Basics</subtitle>
Published: 01 November 2012
Fig. 24 Corrosion fatigue of a Ti-6Al-4V alloy tested in ambient air. Intergranular cracking and fatigue striations are evident on the fracture surface; the grain appears to have separated from the rest of the microstructure. Source: Ref 17
More
Image
Published: 01 September 2005
Fig. 10 Intergranular bending fatigue crack initiation at the surface of a gas-carburized and direct-cooled SAE 8719 steel specimen. Source: Ref 20
More
Image
Published: 01 December 2015
Fig. 23 Corrosion fatigue of a Ti-6Al-4V alloy tested in ambient air. Intergranular cracking and fatigue striations are evident on the fracture surface; the grain appears to have separated from the rest of the microstructure. Source: Ref 21
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270067
EISBN: 978-1-62708-301-0
... is shown in Fig. CH2.3 . In the transgranular fracture zone, well-defined beach marks, typical of fatigue, could be seen ( Fig. CH2.4a ). At higher magnifications, striations were seen confirming the fatigue crack propagation ( Fig. CH2.4b ). Fig. CH2.3 SEM fractograph showing intergranular...
Abstract
A low-pressure turbine rotor blade failed in service, causing extensive engine damage. A section of the blade broke off around 25 mm from the root platform, producing a flat fracture surface that appeared smooth on one end and grainy elsewhere. Based on their examination, investigators concluded that the nickel-base superalloy blade was exposed to high temperatures and stresses, initiating a crack that propagated under cyclic loading. This chapter provides a summary of the investigation and the insights acquired using scanning electron fractography, metallography, and hardness measurements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270138
EISBN: 978-1-62708-301-0
... on their observations and the results of SEM imaging described in the chapter, investigators concluded that the blade failed by low-cycle fatigue, acting on a preexisting crack. fractography high pressure turbine blades low-cycle fatigue SEM fractography visual examination Summary A nimonic alloy...
Abstract
A high-pressure turbine blade in an aircraft engine failed prematurely, fracturing close to the root. Visual examination revealed significant plastic deformation on the leading edge of the blade, blocky cleavage on the trailing edge, and a region covered with fissures in between. Based on their observations and the results of SEM imaging described in the chapter, investigators concluded that the blade failed by low-cycle fatigue, acting on a preexisting crack.
Image
in Case Studies of Steel Component Failures in Aerospace Applications
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 59 SEM fractographs documenting the fracture features found at the origin. (a) Fatigue striations emanating from the origin (200 μm). (b) Intergranular fracture at origin (location A, 50 μm). (c) Intergranular fracture and corrosion products found at the origin (13 μm). (d) Intergranular
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130351
EISBN: 978-1-62708-284-6
... diameter surface (10 μm). (b) Fracture surface away from the inner diameter surface showing intergranular and transgranular features (10 μm) Fig. 38 SEM fractographs showing fatigue growth at regions close to the outer diameter surface. (a) At boundary of discolored region (5 μm). (b) Outside...
Abstract
This chapter presents various case histories that illustrate a variety of failure mechanisms experienced by the high-strength steel components in aerospace applications. The components covered are catapult holdback bar, AISI 420 stainless steel roll pin, main landing gear (MLG) lever, inboard flap hinge bolt, nose landing gear piston axle, multiple-leg aircraft-handling sling, aircraft hoist sling, internal spur gear, and MLG axle. In addition, the chapter provides information on full-scale fatigue testing, nondestructive testing, and failure analysis of fin attach bolts.
Image
Published: 01 August 2005
Fig. 3.38 Fracture surface of a corrosion fatigue crack in a rotating bending specimen of 2014-T6 aluminum alloy. (a) Optical photograph showing the origin and beach marks typical of fatigue fracture. (b) Microphotograph of a section through the fatigue origin (arrow). The fracture surface
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270135
EISBN: 978-1-62708-301-0
... blade. The fracture is intergranular. The crack in the blade was opened to expose the fracture surface. The dark region in one of the corners ( Fig. CH30.5 ) shows that there was a preexisting crack that must have been oxidized. The SEM fractograph of this region also shows intergranular cracking ( Fig...
Abstract
A second-stage turbine blade in an aircraft engine failed in service, fracturing along a path through the shroud hole. Cracks were also found in the shroud holes of the two adjacent blades. Based on the results of visual examination and SEM fractography, investigators concluded that the fracture and cracks were due to the fretting action of the pins inside the shroud holes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
...) at which stable fatigue cracks became unstable in bending fatigue of similarly processed steels. Source: Ref 13 Fig. 10 Intergranular bending fatigue crack initiation at the surface of a gas-carburized and direct-cooled SAE 8719 steel specimen. Source: Ref 20 Fig. 11 Intergranular...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270102
EISBN: 978-1-62708-301-0
...). The bolt heads, shanks, and longitudinal sections fatigue striations were observed with an average spacing of 2.5 near the threaded region were also examined. Deep intergranular lm (Fig. CH17.11). At other places on the same fracture surface, oxidation was observed on the bolts chosen at random, at all lo...
Abstract
A design modification intended to reduce dowel bolt failures in an aircraft engine proved ineffective, prompting an investigation to determine what was causing the bolts to break. As the chapter explains, failure specimens were examined under various levels of magnification and subjected to chemical analysis and low-cycle fatigue tests. Based on their findings, investigators concluded that the bolts failed due to fatigue compounded by excessive clearances and poor surface finishes. The chapter provides a number of recommendations addressing these issues and related concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage. constant-load creep curves creep deformation creep-fatigue interaction elevated-temperature fracture high-temperature fatigue stress...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270133
EISBN: 978-1-62708-301-0
.... Testing Procedure and Results Scanning Electron Fractography Under the SEM, intergranular facets were observed on the dark brown region of the failed blade ( Fig. CH29.5 ). Careful examination of the transition zone did not reveal the presence of fatigue striations. Fig. CH29.5 SEM...
Abstract
A second-stage compressor blade in an aircraft engine fractured after 21 h of service. The remaining portion of the blade was removed and examined as were several adjacent blades. Based on the results of SEM fractography, microstructural analysis, and hardness testing, the blade failed due to stress-corrosion cracking combined with the effects of inadequate tempering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
... Abstract This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement...
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Image
Published: 01 August 1999
. Grain flow in this area was at an angle to applied stress, which resulted in end grain exposure. 105 x . (d) SEM fractograph taken between the arrows in (b). Note intergranular fracture pattern indicative of SCC. 95 x . (e) SEM taken near the termination of the fracture showing the crack still
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270025
EISBN: 978-1-62708-301-0
.... Figure 4.10 is a SEM fractograph showing the striations in a component failed due to fatigue. The striations have a curvature with center at the origin of fracture. A SEM fractograph of an intergranular fracture in a high-strength steel component due to hydrogen embrittlement is shown in Fig. 4.11...
Abstract
This chapter provides an overview of the tools and techniques used to examine failure specimens and the wealth of information that can be obtained from fracture surfaces, cracks, wear patterns, and other such features. It discusses the use of metallography, fractography, and optical and electron microscopy. It presents a number of images recorded using these methods and explains what they reveal about the mode of fracture and the state of the component prior to failure.
Image
in Strain-Range Partitioning—Concepts and Analytical Methods
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 3.16 Examples of CP damage and cracking in AISI type 316 stainless steel at 705 °C (1300 °F), at only 10% of expected creep-fatigue life. (a) Voiding in grain boundaries and slip-plane sliding. (b) Intergranular cracking and slip-plane sliding. Source: Ref 3.3
More
Image
in Tools and Techniques for Material Characterization of Boiler Tubes
> Failure Investigation of Boiler Tubes: A Comprehensive Approach
Published: 01 December 2018
Fig. 5.9 Typical SEM fractographs showing (a) crack filled with corrosion products in a carbon steel tube, 100×; (b) striations in a fatigue failure, 250×; (c) dimples in ductile failure, 500×; (d) cleavage facets in a brittle fracture, 1000×; (e) brittle fracture with an intergranular mode
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240265
EISBN: 978-1-62708-251-8
... fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction...
Abstract
Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. This chapter begins with a section on creep curves, covering the three distinct stages: primary, secondary, and tertiary. It then provides information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction and the approaches to design against creep.
Image
Published: 01 September 2005
Fig. 8 Fatigue fracture in gas-carburized and modified 4320 steel. (a) Overview of initiation, stable crack propagation, and unstable crack propagation. (b) Same area as shown in (a), but with extent of stable crack indicated by dashed line. (c) Higher magnification of intergranular initiation
More