Skip Nav Destination
Close Modal
Search Results for
intergranular brittle fracture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 244 Search Results for
intergranular brittle fracture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 September 2008
Image
Published: 01 September 2005
at 119×. (c) Morphology in the large-grain base material at the same magnification as (b), showing intergranular brittle fracture features. Scanning electron micrograph. Original magnification at 119×. (d) Metallographic image showing the weak grain-boundary phase in the weld. Potassium dichromate etch
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270196
EISBN: 978-1-62708-301-0
... Abstract Fastening screws used in fuel-injection pumps failed during assembly and were examined to determine the cause. Based on observations and the result SEM fractography and hardness measurements, the screws failed by brittle intergranular fracture due to hydrogen embrittlement associated...
Abstract
Fastening screws used in fuel-injection pumps failed during assembly and were examined to determine the cause. Based on observations and the result SEM fractography and hardness measurements, the screws failed by brittle intergranular fracture due to hydrogen embrittlement associated with plating procedures. The report includes recommendations for improving the quality of the screws.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610055
EISBN: 978-1-62708-303-4
... it appears under various levels of magnification. It also discusses the ductile-to-brittle transition observed in steel, the characteristics of intergranular fracture, and the causes of embrittlement. brittle fracture crack nucleation crack propagation ductile fracture microvoid coalescence...
Abstract
This chapter discusses the causes and effects of ductile and brittle fracture and their key differences. It describes the characteristics of ductile fracture, explaining how microvoids develop and coalesce into larger cavities that are rapidly pulled apart, leaving bowl-shaped voids or dimples on each side of the fracture surface. It includes SEM images showing how the cavities form, how they progress to final failure, and how dimples vary in shape based on loading conditions. The chapter, likewise, describes the characteristics of brittle fracture, explaining why it occurs and how it appears under various levels of magnification. It also discusses the ductile-to-brittle transition observed in steel, the characteristics of intergranular fracture, and the causes of embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270133
EISBN: 978-1-62708-301-0
... was in brittle mode, with intergranular facets. The blade also had cracks in other regions. The blade had unusually high hardness, and the fracture was attributed to SCC. Background A blade of the second-stage compressor blade of an aircraft engine fractured after 21 hours and 19 minutes of service...
Abstract
A second-stage compressor blade in an aircraft engine fractured after 21 h of service. The remaining portion of the blade was removed and examined as were several adjacent blades. Based on the results of SEM fractography, microstructural analysis, and hardness testing, the blade failed due to stress-corrosion cracking combined with the effects of inadequate tempering.
Image
in Case Studies of Steel Component Failures in Aerospace Applications
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 37 SEM fractographs showing brittle intergranular structure in discolored region of the fracture surface. (a) Intergranular fracture partially covered with scale at the area adjacent to the inner diameter surface (10 μm). (b) Fracture surface away from the inner diameter surface showing
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130043
EISBN: 978-1-62708-284-6
... Abstract This chapter provides an overview of the possible mechanisms of failure for heat treated steel components and discusses the techniques for examining fractures, ductile and brittle failures, intergranular failure mechanisms, and fatigue. It begins with a description of the general...
Abstract
This chapter provides an overview of the possible mechanisms of failure for heat treated steel components and discusses the techniques for examining fractures, ductile and brittle failures, intergranular failure mechanisms, and fatigue. It begins with a description of the general sources of component failure. This is followed by a section on the stages of a failure analysis, which can proceed one after the other or occur at the same time. These stages of analysis are collection of background data, preliminary visual examination, nondestructive testing, selection and preservation of specimens, mechanical testing, macroexamination, microexamination, metallographic examination, determination of the fracture mechanism, chemical analysis, exemplar testing, and analysis and writing the report. The chapter ends with a discussion on various processes involved in the determination of the fracture mechanism.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
... at room temperature, right, and at –196°C, left Crack propagation by brittle fracture can occur across the grains (transgranular) or along the grain boundaries (intergranular). In the transgranular mode, the fracture process takes place by cleavage along specific crystallographic planes. Figure 7...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630063
EISBN: 978-1-62708-270-9
... applications, and fatigue for multiple-load applications. Each of these fracture modes are discussed in this chapter. The factors affecting the ductile brittle relationship are also covered. cleavage fatigue fracture modes intergranular fracture quasi-cleavage fracture shear single-load fracture...
Abstract
From a fundamental standpoint, there are only two modes, or ways, in which metals can fracture under single, or monotonic, loads: shear and cleavage. There are fracture modes other than shear and cleavage. These include intergranular and quasi-cleavage fracture modes for single-load applications, and fatigue for multiple-load applications. Each of these fracture modes are discussed in this chapter. The factors affecting the ductile brittle relationship are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
...-centered cubic metals. See Chapter 6, “Basic Single-Load Fracture Modes,” in this book for other discussion on ductile/brittle fracture. Microstructural Aspects of Brittle Fracture Brittle fractures usually propagate by either or both of two fracture modes, cleavage or intergranular. In most...
Abstract
A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously in order to cause brittle fracture in a normally ductile steel. The chapter then discusses the macroscale characteristics and microstructural aspects of brittle fracture. A summary of the types of embrittlement experienced by ferrous alloys is presented. The chapter concludes with a brief section providing information on mixed fracture morphology.
Image
Published: 01 November 2010
Fig. 5.9 Scanning electron micrographs of the fracture surface of alloy 706 due to stress-assisted grain-boundary oxidation after constant strainrate testing. (a) Brittle, intergranular fracture of unmodified alloy 706. (b) Transition zone of the boronized sample, showing a ductile
More
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.16 Map of fracture modes in hardened steels produced by tensile and bending loads as a function of tempering temperature and steel carbon content. The transition from ductile to brittle intergranular fracture in low-temperature-tempered (LTT) steels at 0.5% C is shown and approaches
More
Image
in Tools and Techniques for Material Characterization of Boiler Tubes
> Failure Investigation of Boiler Tubes: A Comprehensive Approach
Published: 01 December 2018
Fig. 5.9 Typical SEM fractographs showing (a) crack filled with corrosion products in a carbon steel tube, 100×; (b) striations in a fatigue failure, 250×; (c) dimples in ductile failure, 500×; (d) cleavage facets in a brittle fracture, 1000×; (e) brittle fracture with an intergranular mode
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270113
EISBN: 978-1-62708-301-0
... any damage or corrosion and with shiny bright and dull gray areas ( Fig. CH20.2 ). On further examination in the SEM, the dull gray area showed intergranular fracture ( Fig. CH20.3 ). The brighter area showed typical brittle fracture features ( Fig. CH20.4 ). Fig. CH20.2 Fracture surface...
Abstract
An aircraft went down over water some 30 minutes into a flight. The wreckage was retrieved and the elevator linkage components were dismantled, cleaned, and reassembled. As the chapter explains, both the port and starboard hinge pins had fractured at a tack welded joint along a flange. Based on visual examination, SEM fractography, and chemical analysis, investigators concluded that the hinge pins were not made from the specified steel and were not properly treated after cadmium plating. The pins failed due to hydrogen embrittlement, which may have been aggravated by welding. The chapter provides several recommendations to avoid such failures in the future.
Image
Published: 01 September 2008
illustrating the brittle mode of failure associated with the fracture. Original magnification: 50×. (d) Micrograph showing the typical concentrations of nonmetallic stringers in the tube material. (e) Micrograph showing a quench crack. Note the intergranular branching and heavy oxide. Original magnification
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... for the two steels. Source: Ref 19.38 Quench Embrittlement The conditions for quench embrittlement , an intergranular mechanism of brittle fracture, develop in high-carbon steels during austenitizing or quenching; tempering is not required. Thus, the term has been used to describe a form...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080379
EISBN: 978-1-62708-304-1
... on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically...
Abstract
This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically occurs at the lower end of the intermediate temperature range and has been observed in ferritic steels, stainless steels, Fe-Ni-Cr alloys, and nickel-base alloys, as described in the chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030126
EISBN: 978-1-62708-282-2
... solvation and dissolution Mechanical fracture (ductile or brittle) Mechanical fracture includes normal fracture processes that are assumed to be stimulated or induced by one of the following interactions between the material and the environment: Adsorption of environmental species Surface...
Abstract
This chapter focuses on stress-corrosion cracking (SCC) of metals and their alloys. It is intended to familiarize the reader with the phenomenological and mechanistic aspects of stress corrosion. The phenomenological description of crack initiation and propagation describes well-established experimental evidence and observations of stress corrosion, while the discussions on mechanisms describe the physical process involved in crack initiation and propagation. Several parameters that are known to influence the rate of crack growth in aqueous solutions are presented, along with important fracture features.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180151
EISBN: 978-1-62708-256-3
... and alloys (see Fig. 7 ) Brittle intergranular fracture typical of temper-embrittled steel, where fracture is due to segregation of an embrittling species to grain boundaries (such as oxygen in iron or nickel), due to intergranular stress-corrosion cracking (IGSCC) or due to hydrogen embrittlement (see...
Abstract
This appendix focuses on procedures, techniques, and precautions associated with the investigation and analysis of metallurgical failures that occur in service. It describes the steps of an orderly failure analysis from collecting and examining samples to performing mechanical and nondestructive tests, preparing and examining fractographs and micrographs, determining failure mode, writing the report, and developing follow-up recommendations. It also examines the fundamental mechanisms of failure, why they occur, and how to identify them by their characteristic features.