Skip Nav Destination
Close Modal
Search Results for
induction furnaces
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 279 Search Results for
induction furnaces
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.24 Total holding power requirements for industrial channel induction furnaces of various capacities. From W. A. Parsons and J. Powell, Proc. Conf. on Electric Melting and Holding Furnaces in Iron Foundries , University of Warwick, March, 1980, p 18-1 ( Ref 15 ); and British Foundryman
More
Image
Published: 01 December 2006
Image
in Special Applications of Induction Heating
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 11.27 Photograph of a vacuum induction furnace used for controlled solidification of metals Source: Vacuum Industries, Inc.
More
Image
Published: 01 November 2013
Fig. 12 A cross section of a channel-type induction furnace showing the water-cooled copper induction coil that is located inside of a 360° loop formed by the throat and channel portion of the molten metal vessel. It is the channel portion of the loop that serves as the secondary
More
Image
Published: 01 November 2013
Fig. 13 A cross section of a coreless-type induction furnace showing water-cooled copper induction coil and key structural components. The entire molten metal bath (which serves as the secondary) is surrounded by the coil (the primary) that encircles the working lining. Source: Ref 5
More
Image
Published: 01 November 2013
Fig. 14 Sectional view of a coreless induction furnace. (Arrows in crucible show direction of stirring action.) Source: Ref 5
More
Image
Published: 01 December 2006
Fig. 6.40 Induction furnace with single-phase (left) and multiphase (right) coil connection. TM, temperature sensor
More
Image
Published: 01 December 2006
Fig. 6.41 Induction furnace with integrated heat holding chamber for heating of copper and brass billets
More
Image
Published: 01 December 2006
Image
Published: 01 October 2011
Fig. 5.16 A cross-sectional view of a coreless-type induction furnace illustrating four-quadrant stirring action, which aids in producing a homogeneous melt
More
Image
Published: 01 January 2022
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.21 Selection of power-supply frequency for coreless induction melting furnaces as a function of furnace size. A = recommended frequency regime. B = acceptable frequency. C = furnace frequencies which have been used but which do not provide good results. D = unusable furnace frequencies
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
... the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum...
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320003
EISBN: 978-1-62708-332-4
... depending on the grade of the cast iron and its application. This reduction of carbon is achieved by blending the pig iron with steel scrap in stack furnaces called cupolas or in coreless induction furnaces. Cupolas are stack furnaces that are similar to blast furnaces; they use coke as fuel and air...
Abstract
This chapter provides a brief overview of iron and steel manufacturing and the major equipment involved in the process as well as identifying where casting fits into the overall process. In addition, it provides an overview of cast iron manufacturing, including the processes involved in converting pig iron into cast iron and steel.
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.23 Power consumption quoted by furnace manufacturers for melting of cast iron in line-frequency induction furnaces of various capacities. From W. A. Parsons and J. Powell, Proc. Conf. on Electric Melting and Holding Furnaces in Iron Foundries , University of Warwick, March, 1980, p 18
More
Image
Published: 01 December 2006
Fig. 6.45 Temperature variation (1, theoretical; 2, practical) over the length of the billet in the cast logs in an induction furnace
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200187
EISBN: 978-1-62708-354-6
... Abstract This chapter provides an overview of the types of melting furnaces and refractories for steel casting. It then presents information about arc furnace melting and induction melting cycles. The chapter also describes methods for the removal of phosphorous, the removal of sulfur...
Abstract
This chapter provides an overview of the types of melting furnaces and refractories for steel casting. It then presents information about arc furnace melting and induction melting cycles. The chapter also describes methods for the removal of phosphorous, the removal of sulfur, and the recovery of elements from slag. It then presents an overview of argon-oxygen-decarburization (AOD) refining and types of ladles. The chapter describes chemical analysis that is performed using either optical emission or x-ray spectrographs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220085
EISBN: 978-1-62708-341-6
... and alloy steels (a) Carbon content,% Temperature for furnace heating, °F (°C) Temperature for induction heating, °F (°C) 0.30 1550 to 1600 (845 to 870) 1650 to 1700 (900 to 925) 0.35 1525 to 1575 (830 to 855) 1650 (900) 0.40 1525 to 1575 (830 to 855) 1600 to 1650 (870 to 900...
Abstract
The detailed heating requirements for specific applications must be considered before construction and implementation of any induction heating process. These requirements may include considerations such as type of heating, throughput and heating time, workpiece material, peak temperature, and so forth. The major applications of induction technology include through heating, surface heating (for surface heat treatment), metal melting, welding, brazing, and soldering. This chapter summarizes the selection of equipment and related design considerations for these applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
.... Initially, this was done using metal or electrically conducting crucibles. Later, Ferranti, Colby, and Kjellin developed induction melting furnaces which made use of nonconducting crucibles. In these designs, electric currents were induced directly into the charge, usually at simple line frequency, or 60 Hz...
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
...% C, with silicon contents of 1.5 to 2.5%. Cast irons, which are melted in induction furnaces, cupolas, and electric arc furnaces, are generally produced by sand casting. Steels include all alloys containing less than 2% C, with additions of small amounts of manganese and silicon, and other alloying...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.
1