Skip Nav Destination
Close Modal
Search Results for
induction brazing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 105 Search Results for
induction brazing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2011
Fig. 7.7 Typical coil and joint configurations used in induction brazing: (a) solenoid coil for plug-to-tube joint (note location of brazing alloy ring), (b) internal-external coil for flange-to-tube joint (flange chamfered to assist preplaced alloy ring), (c) split solenoid coil for tube
More
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.31 Modified brazing joints. From J. Davies and P. Simpson, Induction Heating Handbook , McGraw-Hill, Ltd., London, 1979 ( Ref 13 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220253
EISBN: 978-1-62708-341-6
..., bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems. automation induction bar heating induction billet heating induction brazing induction heat treatment induction...
Abstract
Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating, bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290165
EISBN: 978-1-62708-306-5
... processes such as torch brazing, induction brazing, or salt-bath brazing when high-volume production output is a primary factor. Secondary factors include tooling requirements, fluxing, and cleaning requirements. With many brazing assemblies, the weight of the parts alone is sufficient to hold them together...
Abstract
Brazing and soldering processes use a molten filler metal to wet the mating surfaces of a joint, with or without the aid of a fluxing agent, leading to the formation of a metallurgical bond between the filler and the respective components. This chapter discusses the characteristics, advantages, and disadvantages of brazing and soldering. The first part focuses on the fundamentals of the brazing process and provides information on filler metals and specific brazing methods. The soldering portion of the chapters provides information on solder alloys used, selection criteria for base metal, the processes involved in precleaning and surface preparation, types of fluxes used, solder joint design, and solder heating methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220085
EISBN: 978-1-62708-341-6
... temperature, and so forth. The major applications of induction technology include through heating, surface heating (for surface heat treatment), metal melting, welding, brazing, and soldering. This chapter summarizes the selection of equipment and related design considerations for these applications...
Abstract
The detailed heating requirements for specific applications must be considered before construction and implementation of any induction heating process. These requirements may include considerations such as type of heating, throughput and heating time, workpiece material, peak temperature, and so forth. The major applications of induction technology include through heating, surface heating (for surface heat treatment), metal melting, welding, brazing, and soldering. This chapter summarizes the selection of equipment and related design considerations for these applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
...). Advantages specific to induction melting as compared with other melting processes include a natural stirring action (giving a more uniform melt) and long crucible life. Welding, Brazing, and Soldering High-frequency induction welding offers substantial energy savings because heat is localized...
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
... to the heating sources. Of industrial importance are furnace, induction, torch, resistance, dip, diffusion, and infrared brazing. (Furnace brazing is performed using a heated furnace. Induction brazing uses the heat from the resistance of the workpieces subjected to a voltage induced through one or more coils...
Abstract
Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design, and testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050317
EISBN: 978-1-62708-311-9
... Abstract This appendix provides practical information on induction coils and how they are made. It discusses soldering methods, preferred materials, design challenges, and best practices and procedures. It also discusses the design, construction, and application of magnetic flux concentrators...
Abstract
This appendix provides practical information on induction coils and how they are made. It discusses soldering methods, preferred materials, design challenges, and best practices and procedures. It also discusses the design, construction, and application of magnetic flux concentrators and the growing use of computer simulation.
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.30 Basic brazing joints: lap, butt, and scarf. From J. Davies and P. Simpson, Induction Heating Handbook , McGraw-Hill, Ltd., London, 1979 ( Ref 13 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220185
EISBN: 978-1-62708-341-6
... Induction Heating , McGraw-Hill, New York, 1950 ( Ref 1 ) Once coil balance has been achieved, water cooling can be accomplished by brazing or soldering formed tubing to the plate coil, as shown in Fig. 8.24 . Fig. 8.24 Schematic illustration of the energizing and cooling of a multiplace...
Abstract
Coil design for induction heating has been developed and refined over time based on the theoretical principles applied in practice to several simple inductor geometries such as the classical solenoidal coil. This chapter reviews the fundamental considerations in the design of inductors and describes some of the most widely used coils and common design modifications. Specialty coil designs for specific applications are also discussed. The chapter concludes with sections devoted to coil fabrication and design of power-supply leads.
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.29 Influence of joint thickness on theoretical strength of soldered and brazed joints. From F. W. Curtis, High Frequency Induction Heating , McGraw-Hill, New York, 1950 ( Ref 3 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler...
Abstract
Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler metals and the types of flaws exhibited by brazed joints.
Image
in Process Design for Specific Applications
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 6.32 Brazed joint designs intended to lessen stress concentrations and fatigue failures. From J. Davies and P. Simpson, Induction Heating Handbook , McGraw-Hill, Ltd., London, 1979 ( Ref 13 )
More
Image
in Materials Handling
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 10.18 Hand-operated fixture for brazing of jewelry settings to gold rings by induction methods. From J. Libsch and P. Capolongo, Lepel Review , Vol 1, No. 5, p 1 ( Ref 9 )
More
Image
in Coil Design and Fabrication
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 8.25 Design of a single-turn, multiplace inductor for simultaneous brazing of different-size couplings in a single operation. From F. W. Curtis, High Frequency Induction Heating , McGraw-Hill, New York, 1950 ( Ref 1 )
More
Image
in Materials Handling
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
Fig. 10.3 Methods for continuous movement of parts through a controlled atmosphere during induction heating. (a) Brazing of brass watchband clips without flux in a forming-gas atmosphere. (b) Fixture using an elevator-pushrod arrangement. From Anon., Lepel Review , Vol 1, No. 10, p 1 ( Ref 2 )
More
Image
in Materials Handling
> Elements of Induction Heating<subtitle>Design, Control, and Applications</subtitle>
Published: 01 June 1988
through a support fixture. (d) Single-turn induction coil and retainer plates providing an atmosphere chamber for brazed joints. From Anon., Lepel Review , Vol 1, No. 10, p 1 ( Ref 2 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290079
EISBN: 978-1-62708-306-5
... Abstract This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit...
Abstract
This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290001
EISBN: 978-1-62708-306-5
... is also simplified by the fact that heat can be applied to the joint by many means, including torches, furnaces, induction coils, electrical resistance, and dipping. Several joints in one assembly often can be produced in one multiple-braze operation during one heating cycle, further enhancing production...
Abstract
Joining comprises a large number of processes used to assemble individual parts into a larger, more complex component or assembly. The selection of an appropriate design to join parts is based on several considerations related to both the product and the joining process. Many product design departments now improve the ease with which products are assembled by using design for assembly (DFA) techniques, which seek to ensure ease of assembly by developing designs that are easy to assemble. This chapter discusses the general guidelines for DFA and concurrent engineering rules before examining the various joining processes, namely fusion welding, solid-state welding, brazing, soldering, mechanical fastening, and adhesive bonding. In addition, it provides information on several design considerations related to the joining process and selection of the appropriate process for joining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... Abstract Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application...
Abstract
Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application decisions. It discusses the basic concepts of fusion welding and the differences between solid-solution-hardened and precipitation-hardened wrought superalloys. It addresses joint integrity, design, weld-related cracking, and the effect of grain size, precipitates, and contaminants. It covers common fusion welding techniques, defect prevention, fixturing, heat treatments, and general practices, including the use of filler metals. It also discusses several solid-state welding methods, superplastic forming, and transient liquid phase bonding, a type of diffusion welding process. The chapter includes extensive information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use.
1