Skip Nav Destination
Close Modal
Search Results for
induced crack size
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 501 Search Results for
induced crack size
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... or billets; these are described in the previous section. Internal flaws often appear as cracks or tears, and they can result either from forging with too light a hammer or from continuing forging after the metal has cooled down below a safe forging temperature. Bursts can also occur during the forging...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610585
EISBN: 978-1-62708-303-4
...) Heat-Affected Zone Cracks Hydrogen-Induced Cracking (Cold Cracking) Lamellar Tearing An example of this would be part-through drill holes in a bicycle handlebar stem, resulting in fatigue initiation at the holes and subsequent fracture ( Fig. 25 ). Four types of cracking are a concern...
Abstract
This appendix provides detailed information on design deficiencies, material and manufacturing defects, and service-life anomalies. It covers ingot-related defects, forging and sheet forming imperfections, casting defects, heat treating defects, and weld discontinuities. It shows how application life is affected by the severity of service conditions and discusses the consequences of using inappropriate materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290099
EISBN: 978-1-62708-306-5
... such as porosity and hot cracking, and the properties of the weld metal. Inherent to the welding process is the formation of a molten weld pool directly beneath the heat source which contains impurities. The molten metal volume is small compared with the size of the base metal. The composition of the molten...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source causes physical state changes, metallurgical phase transformations, and transient thermal stresses and metal movement. This chapter begins by discussing weld metal solidification behavior and the solid-state transformations of the main classes of metals and alloys during fusion welding. The main classes include work- or strain-hardened metals and alloys, precipitation-hardened alloys, transformation-hardened steels and cast irons, stainless steels, and solid-solution and dispersion-hardened alloys. The following section provides information on the residual stresses and distortion that remain after welding. The focus then shifts to distortion control of weldments. Inclusions and cracking are discussed in detail. The chapter also discusses the causes for reduced fatigue strength of a component by a weld: stress concentration due to weld shape and joint geometry; stress concentration due to weld imperfections; and residual welding stresses. Inspection and characterization of welds are described in the final section of this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770199
EISBN: 978-1-62708-337-9
... stress distribution is also increased ( Fig. 8.5 ). Excessive down feeds and cross feeds can cause burning and cracking. Shot peening is a surface treatment that increases skin hardness and induces compressive stresses into the immediate surface of the workpiece. It can also remove directional...
Abstract
Mechanical treatments such as grinding and shot peening are often employed in the production of case-carburized parts. Grinding, besides restoring precision, removes carbide films, internal oxidation, and high-temperature transformation products. Shot peening strengthens component surfaces and induces a stress state that increases fatigue resistance. This chapter describes both processes as well as roller burnishing. It explains how these treatments are applied and how they influence the microstructure, properties, and behaviors of case-hardened components. It also addresses process challenges, particularly in regard to grinding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
... Fig. 24 (a) AISI S5 tool steel hammer head that cracked during heat treatment. The fracture was caused by quench cracking by the decarburized surface (b) and deep stamp mark (arrows). Actual size. Source: Ref 16 Fig. 25 Quench crack promoted by the presence of a deep, sharp stamp mark...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780109
EISBN: 978-1-62708-268-6
... include inadequate or inappropriate coatings, the presence of strong electrolytes, and discontinuities in the coating. Stress-corrosion cracking can be induced by a combination of corrosion and tensile stresses. (Tensile stresses are frequently present in metallic components.) If a fracture occurs...
Abstract
This chapter focuses on common failure characteristics exhibited by mechanical and electrical components. The topic is considered from two perspectives: one possibility is that the system failed because parts were nonconforming to drawing requirements and another possibility is that the system failed even though all parts in the system met their drawing requirements. The common failures discussed in this chapter include those associated with metallic components, composite materials, plastic components, ceramic components, and electrical and electronic components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720183
EISBN: 978-1-62708-305-8
... of penetrant that seeps into the developer, the crack width can appear 100 times larger than its actual size. Source: Ref 1 Fig. 21 Variation in density of eddy current as a function of depth below the surface of a conductor, known as skin effect. Source: Ref 3 Fig. 22 Standard depths...
Abstract
Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface flaw detection techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
... the onset of necking, because the geometry changes induce local triaxial stress components from the tensile load. The cavities grow and, through microvoid coalescence, result in a crack that soon causes fracture. Such cavitation processes in metals typically occur after the onset of necking (or from...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
... that relatively small flaws (20 to 50 μm in radius) can act as sources of failure. These flaws can be processing defects, such as pores or inclusions, or surface cracks produced during machining or handling. Also, because their critical fracture toughness is low, flaw sizes in polycrystalline ceramics...
Abstract
Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress concentrations at flaw tips. As a result, even relatively small flaws (20 to 50 μm in radius) can cause glasses and ceramics to fail. This chapter examines the propensity of flaws to grow in glass and ceramic materials exposed to different environments, especially water, at stresses well below those that would produce immediate failure. It describes crack growth mechanisms, explains how to measure crack growth rates and predict time to failure, and provides crack growth data for a number of materials and environments.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780131
EISBN: 978-1-62708-268-6
... may be sufficient to crack the structure. Corrosion can induce a leak path if the corrosion is deep enough to weaken the container or vessel. Chemical incompatibility can eat through a container or vessel wall if the structure is not compatible with the fluid being contained. Foreign object...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.9781627083096
EISBN: 978-1-62708-309-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
... and uncontrolled crack growth. The essential difference from the strength-of-materials approach is that the fracture mechanics approach explicitly introduces a new physical parameter: the size of a (real or postulated) cracklike flaw. In fracture mechanics, the size of a crack is the dominant structural...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290139
EISBN: 978-1-62708-319-5
..., copper Stainless steel, alumina Particle size 1 μm 100 μm 10 μm Forming route Die compaction, additive manufacturing Die compaction Extrusion, injection molding, additive manufacturing Example binder Paraffin wax, polyvinyl glycol, acrylic Stearic acid, zinc stearate Paraffin wax...
Abstract
Binder removal approaches involve various combinations of heat, solvents, vacuum, and pressure. In each variant, the goal is binder removal without component damage. This chapter addresses the factors that control success, showing how process decisions depend on the powder and binder characteristics. The chapter starts with a comparison of binder-, lubricant-, and polymer-removal situations that arise after powder shaping and then describes the general principles of binder removal in powder-binder techniques. The subsequent sections discuss in detail characteristics, operating procedure, equipment setup, advantages, limitations, and applications of first- and second-stage binder removal processes, as well as the factors influencing these processes. Cost issues associated with binder-removal technologies are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... Unalloyed retained austenite Marginal increase in K Ic by crack blunting Alloyed retained austenite Significant increase in K Ic by transformation-induced toughening Interlath and intralath carbides Decrease K Ic by increasing the tendency to cleave Impurities (P, S, As, Sn) Decrease...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780093
EISBN: 978-1-62708-268-6
... material characteristics. Techniques in this area include energy-dispersive analysis of x-rays, spectroscopy, chromatography, and others. The failure analysis team should select appropriate examination techniques based on hypothesized failure modes. If the team suspects, for example, that cracks...
Abstract
After the fault-tree, a failure-cause identification method has identified potential failure causes and the failure analysis team has prepared a failure mode assessment and assignment (FMA&A). The team knows specifically what to search for when examining components and subassemblies from the failed system. There are numerous techniques and technologies available for examining and analyzing components and subassemblies, which are categorized as follows: optical approaches, dimensional inspection and related approaches, nondestructive test approaches, mechanical and environmental approaches, and chemical and composition analysis for assessing material characteristics. This chapter is a detailed account of the working principle and the steps involved in these techniques and technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900119
EISBN: 978-1-62708-350-8
... of induced stress. It is well known that parts will change in size due to metallurgical phase changes during heating and cooling procedures and will deform as induced stresses are relieved by the application of heat ( Ref 1 ). As alluded to earlier, distortion can be categorized into two groups or types...
Abstract
Distortion is defined as an irreversible and usually unpredictable dimensional change in a component due to thermal processing or temperature variations and loading in service. This chapter describes two types of distortion: size distortion and shape distortion. It addresses how distortion can be managed by controlling certain factors. The chapter discusses the cause and effect of distortion during nitriding, the processes involved in stock removal prior to nitriding, and the criteria for post-machining operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870267
EISBN: 978-1-62708-344-7
... size, would undoubtedly have shown large differences in fatigue life; the tougher material very likely would have outlasted the less-tough material by a sizable factor. Thus, fracture toughness enters as an important material variable whenever an appreciable part of the life is in the crack growth...
Abstract
This chapter is largely a compendium of best practices and procedures for minimizing the effects of fatigue. It explains how to make products more resistant to fatigue by choosing the right materials and manufacturing processes, avoiding geometries and features that concentrate strains, preventing or removing surface damage, and by inducing compressive mean stresses that prolong fatigue life. It also discusses the use of property conditioning and restoration treatments, the benefits of interference fits and processes such as coaxing, the effects of assembly damage and operating overload, the importance of surface cleanliness and finish, and the role of inspection, testing, replacement, and repair in safe-life and fail-safe designs. Examples highlighting the benefits and potential pitfalls of proof loading tests are included as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... zones) Tool marks and dents Creep voiding/cracking Local “hard spots” (solute-enriched phases) … … Note: In this table, the term defect is defined as “a feature, sized between 1 μm and 1 mm, that impairs the mechanical integrity and performance of a component.” Effects...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440159
EISBN: 978-1-62708-262-4
.... 4 Combination progressive-spinning method of flame hardening. Source: Ref 2 Fig. 5 Magnetic fields and induced currents produced by various induction coils. Source: Ref 3 Fig. 1 Cross section of three sizes of water-hardening tool steel (W1) after heating to 800 °C (1475 °F...
Abstract
This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be followed for processing of stainless steels.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820169
EISBN: 978-1-62708-339-3
... expansion Differences in thermal conductivity Corrosion problems including galvanic corrosion, oxidation, hydrogen-induced cracking, and sensitization Weld Metal In the fusion welding of dissimilar-metal joints, the most important consideration is the weld metal composition and its properties...
Abstract
Many factors must be considered when welding dissimilar metals, and adequate procedures for the various metals and sizes of interest for a specific application must be developed and qualified. Most combinations of dissimilar metals can be joined by solid-state welding (diffusion welding, explosion welding, friction welding, or ultrasonic welding), brazing, or soldering where alloying between the metals is normally insignificant. This chapter describes the factors influencing joint integrity and discusses the corrosion behavior of dissimilar metal weldments.