Skip Nav Destination
Close Modal
Search Results for
impurity limits
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 436 Search Results for
impurity limits
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340453
EISBN: 978-1-62708-427-7
... impurity limits lightweighting waste management Collection and closed-loop recycling of aluminum cans is a model for sustainable packaging. However, recycling rates vary dramatically among different countries and municipalities WHAT IS THE ROLE OF MATERIALS in today’s changing global...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... limited, element-specific impurity limits. 2.2 Specifications Aluminum castings are the subject of numerous specifications and standards. Within the United States, alloy chemistry and thermal practices are registered with the Aluminum Association (see Section 2.3.1 of this chapter). Procurement...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120013
EISBN: 978-1-62708-269-3
... (sheet), 0.0125H (bar), and 0.0100H (billet). Compositions of various alpha and near-alpha titanium alloys Table 3.3(a) Compositions of various alpha and near-alpha titanium alloys Product specification Impurity limits, wt% max Alloying elements, wt% (a) N C H Fe O Max total...
Abstract
This chapter covers the basic metallurgy of titanium, explaining how it influences the development of microstructure and the mechanical properties that can be achieved. It describes the nature of each of the four major phases of titanium, the effect of alloying elements on phase transformations, and the formation of secondary phases. The chapter presents and interprets a wide range of micrographs and includes several tables containing composition and tensile property data for many titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340019
EISBN: 978-1-62708-427-7
... metal grades ranging from P0202 to P2585. Although iron and silicon are the major impurities of concern, other elements such as zinc, gallium, or vanadium may have specific limits necessary for special applications such as electrical conductors. For example, P1020A is a typical designation for smelter...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170528
EISBN: 978-1-62708-297-6
... may be detrimental to a particular soldered product. A determination of a revised or limited specification for solder materials sometimes is required. Impurities of a metallic and nonmetallic nature can be found in raw materials and in scrap solder sometimes used by reclaimers. Reclaimed solder...
Abstract
This article examines the role of alloying in the production and use of lead and tin. It describes the various categories and grades of lead and lead-base alloys along with their nominal compositions and corresponding UNS numbers. It also discusses the composition and properties of lead used in battery grids, type metals, and bearings. It, likewise, discusses the use of tin in various types of solder and in bearings and provides composition and property data for application-specific designations and grades. The article also discusses the effect of impurities in tin-lead solders and the amounts and combinations in which they are found.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430343
EISBN: 978-1-62708-253-2
.... They may be subjected to continuous operation for several hours at 110% of their MCR. Attention may not be paid to the safe working of the auxiliary equipment and other components of the boiler. Without giving due importance to the self-limiting capability of auxiliary equipment, power plant management may...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230107
EISBN: 978-1-62708-298-3
.... This beryllium is reconverted to oxide and contains all the impurities present in the original sample. The impurities are determined by arcing the oxide in a graphite cup at 12 A, and the detection limits are stated in Table 9.1 . Detection limits of impurities using emission spectrometry Table 9.1...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030126
EISBN: 978-1-62708-282-2
...-intensity levels (stage 2), the crack propagation rate approaches some constant velocity that is virtually independent of the mechanical driving force. This plateau velocity, V plateau , is characteristic of the alloy-environment combination and is the result of rate-limiting environmental processes...
Abstract
This chapter focuses on stress-corrosion cracking (SCC) of metals and their alloys. It is intended to familiarize the reader with the phenomenological and mechanistic aspects of stress corrosion. The phenomenological description of crack initiation and propagation describes well-established experimental evidence and observations of stress corrosion, while the discussions on mechanisms describe the physical process involved in crack initiation and propagation. Several parameters that are known to influence the rate of crack growth in aqueous solutions are presented, along with important fracture features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
... Abstract Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... of developing the highest strengths among all casting alloys, and these alloys are used where this is a predominant requirement. These alloys (A201.0, 202.0, 204.0, and A206.0) contain 4 to 6% Cu and 0.25 to 0.35% Mg, with highly restrictive impurity (iron and silicon) limits, and in some cases also contain...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230151
EISBN: 978-1-62708-298-3
..., temperature, strain rate, stacking fault energy, and impurity level. The critical resolved shear stress (CRSS) as a function of temperature for the different slip systems is shown in Fig. 13.3 . Notice the temperature ranges necessary to have basal slip compared to prismatic slip [ Aldinger 1979 ]. Fig...
Abstract
This chapter provides an overview of the physical metallurgy of beryllium, discussing phases and phase transformations, physical and mechanical properties, heat treatment, and alloying. It explains how the atomic structure of beryllium, particularly its sp hybrid state, contributes to the anisotropy of elastic constants and slip properties, resulting in a specific stiffness, or modulus-to-density ratio, six times higher than that of any other structural material.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220009
EISBN: 978-1-62708-259-4
... the furnace made it possible for the iron to dissolve a large amount of that element ( Ref 4 ), significantly lowering the metal melting point (refer to Fig. 1.3 ). Liquid iron produced this way is rich in carbon and contains undesirable impurities, leading to a product with somewhat limited properties...
Abstract
This chapter describes the basic steps in the steelmaking process. It explains how iron is reduced from ore in the liquid state through the classic blast furnace process and in the solid state by direct reduction. It discusses the conversion of iron to steel and the technological advancements that led from open hearth steelmaking to basic oxygen processes and ultimately the electric arc furnace (EAF). It describes the versatility, efficiency, and scalability of the EAF process and its impact on recycling and sustainability. It explains how EAF refining and deoxidation practices have changed over time, and describes secondary refining processes such as degassing, homogenization, rinsing, and remelting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170520
EISBN: 978-1-62708-297-6
..., the observed value or calculated value obtained from analysis should be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding procedure described in ASTM E 29. (a) ASTM alloy designations were established in accordance...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
... rupture of the component can occur. Depending on the component, the final failure may be limited either by deformation or by fracture. Local creep processes at the tip of a pre-existing defect or stress concentration can also lead to local crack growth and eventual failure. Numerous texts deal in detail...
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430379
EISBN: 978-1-62708-253-2
... the boiler drum. The impurity concentration also increases with compensation of evaporated water by make-up water. Eventually, the level of impurities in boiler water exceeds acceptable limits. A stage comes when some of the boiler or cycle water must be drained or blown out to maintain the concentration...
Abstract
Water chemistry is a factor in nearly all boiler tube failures. It contributes to the formation of scale, biofilms, and sludge, determines deposition rates, and drives the corrosion process. This chapter explains how water chemistry is managed in boilers and describes the effect of impurities and feedwater parameters on high-pressure boiler components. It discusses deposition and scaling, types of corrosion, and carryover, a condition that occurs when steam becomes contaminated with droplets of boiler water. The chapter also covers water treatment procedures, including filtration, chlorination, ion exchange, demineralization, reverse osmosis, caustic and chelant treatment, oxygen scavenging, and colloidal, carbonate, phosphate, and sodium aluminate conditioning.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
... Abstract Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why...
Abstract
Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why manganese is sometimes added to steel and how unintended consequences, such as the development of sulfide stringers, can offset the benefits. It also examines the effect of alloying elements on the iron-carbon phase diagram, particularly their effect on transformation temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... simultaneously. Stainless steel is an exceptional alloy system in that it is not a dilute solution. Alloy steels may contain several percent of alloying elements, such as carbon, manganese, nickel, molybdenum, chromium, and silicon, in addition to the impurities sulfur, oxygen, and phosphorus. Alloy steels...
Abstract
Metallurgy, as discussed in this chapter, focuses on phases normally encountered in stainless steels and their characteristics. This chapter describes the thermodynamics and the three basic phases of stainless steels: ferrite, austenite, and martensite. Formation of the principal intermetallic phases is also covered. In addition, the chapter provides information on carbides, nitrides, precipitation hardening, and inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170432
EISBN: 978-1-62708-297-6
.... The only difference between them is that a higher level of copper is allowed in AZ91B than in AZ91A. In addition, a high-purity version of AZ91, AZ91D, is also now available for die casting. Because tight limits have been placed on levels of copper, nickel, and iron impurities allowed in AZ91D...
Abstract
This article examines the composition and properties of magnesium and its alloys. It discusses alloy and temper designations, applications and product forms, and commercial alloy systems, and explains how alloying elements affect physical and mechanical properties, processing characteristics, and corrosion behaviors.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090001
EISBN: 978-1-62708-266-2
.... This plateau velocity is characteristic of the alloy/environment combination and is the result of rate-limiting environmental processes such as mass transport of environmental species up the crack to the crack tip. In stage 3, the rate of crack propagation exceeds the plateau velocity as the stress-intensity...
Abstract
This chapter discusses the conditions and sequence of events that lead to stress-corrosion cracking (SCC) and the mechanisms by which it progresses. It explains that the stresses involved in SCC are relatively small and, in most cases, work in combination with the development of a surface film. It describes bulk and surface reactions that contribute to SCC, including dissolution, mass transport, absorption, diffusion, and embrittlement, and their role in crack nucleation and growth. It also discusses crack tip chemistry, grain-boundary interactions, and the effect of stress-intensity on crack propagation rates, and describes several mechanical fracture models, including corrosion tunnel, film-induced cleavage, and tarnish rupture models.
1