Skip Nav Destination
Close Modal
Search Results for
impurity elements
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 412 Search Results for
impurity elements
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2001
Fig. 25 Influence of phosphorus, antimony, arsenic, and tin impurity elements on the temper embrittlement susceptibility of nickel-chromium experimental steels based on the change in (a) 50% fracture appearance transition temperature (FATT) and (b) 100% fibrous FATT after aging at 450 °C (840 °F
More
Image
Published: 01 December 2001
Fig. 26 Influence of phosphorus, antimony, arsenic, and tin Impurity elements on the temper embrittlement susceptibility of nickel-chromium-molybdenum experimental steels based on the change in (a) 50% fracture appearance transition temperature (FATT) and (b) 100% fibrous FATT after aging at 450
More
Image
Published: 01 August 2005
Fig. 2.28 Effect of impurity elements on the impact strength of joints made in mild steel using an Ag-Cu-Zn-Cd filler alloy. Adapted from Boughton and Sloboda [1970]
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
...Abstract Abstract Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
...Abstract Abstract Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain...
Abstract
Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why manganese is sometimes added to steel and how unintended consequences, such as the development of sulfide stringers, can offset the benefits. It also examines the effect of alloying elements on the iron-carbon phase diagram, particularly their effect on transformation temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030003
EISBN: 978-1-62708-282-2
..., and noncatalytic. However, commercial aluminum alloys contain alloying elements, impurity elements, precipitated phases and intermetallic constituent particles. The precipitated phases and intermetallic particles can be anodic or cathodic relative to the matrix or can switch between the two with time as a result...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560029
EISBN: 978-1-62708-291-4
... Elements Commercial plain carbon steels inevitably contain small concentrations of various impurity elements that, in solution, change both the thermodynamics and the kinetics of the transformations of austenite. Consequently, the phase (or constitutional) diagram and the IT and CC diagrams...
Abstract
This chapter describes some of the most essential tools in metallurgy and what they reveal about the structure, composition, and processing requirements of steel. It begins by identifying important details in the constitutional diagram of iron-cementite. It then explains how to read isothermal transformation and continuous-cooling diagrams and how to recognize the effect of various alloying elements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170528
EISBN: 978-1-62708-297-6
.... The most common impurity elements are listed below with their principal levels and effects. Aluminum Traces of aluminum in a tin-lead solder bath can seriously affect soldering qualities. More than 0.005% of the metal can cause grittiness, lack of adhesion, and surface oxidation of the solder alloy...
Abstract
This article examines the role of alloying in the production and use of lead and tin. It describes the various categories and grades of lead and lead-base alloys along with their nominal compositions and corresponding UNS numbers. It also discusses the composition and properties of lead used in battery grids, type metals, and bearings. It, likewise, discusses the use of tin in various types of solder and in bearings and provides composition and property data for application-specific designations and grades. The article also discusses the effect of impurities in tin-lead solders and the amounts and combinations in which they are found.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240583
EISBN: 978-1-62708-251-8
... and tungsten both have very high elastic moduli and high ductile-to-brittle transition temperatures (DBTTs). On the other hand, niobium and tantalum have lower moduli, and the DBTTs are below room temperature. In all cases, their DBTTs ( Fig. 31.3 ) are sensitive to impurity elements that segregate...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. These metals are considered refractory because of their high melting points, high-temperature mechanical stability, and resistance to softening at elevated temperatures. This article discusses the composition, properties, fabrication procedures, advantages and disadvantages, and applications of these refractory metals and their alloys. A comparison of some of the properties of the refractory metals with those of iron, copper, and aluminum is given in a table. The article concludes with a brief section on refractory metal protective coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... of phases coexisting simultaneously. Stainless steel is an exceptional alloy system in that it is not a dilute solution. Alloy steels may contain several percent of alloying elements, such as carbon, manganese, nickel, molybdenum, chromium, and silicon, in addition to the impurities sulfur, oxygen...
Abstract
Metallurgy, as discussed in this chapter, focuses on phases normally encountered in stainless steels and their characteristics. This chapter describes the thermodynamics and the three basic phases of stainless steels: ferrite, austenite, and martensite. Formation of the principal intermetallic phases is also covered. In addition, the chapter provides information on carbides, nitrides, precipitation hardening, and inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140165
EISBN: 978-1-62708-264-8
.... Figure 15.4 presents an illustration of the microsegregation caused by dendritic solidification. The steel had a phosphorus impurity level of 0.07%. Similar to the elements discussed previously, the phosphorus atoms segregate into the interdendritic liquid between the dendrites during solidification...
Abstract
Engineering metals undergo many transformations in the course of production, none more critical than those that occur during solidification. This chapter discusses the process of solidification and its effects on the structure and properties of cast metals. It describes the relationship between cooling rate, grain size, grain shape, and phase structures. It explains how the transition from liquid to solid state creates the conditions under which microsegregation occurs, and how it impacts the distribution of alloying elements, carbides, and inclusions. The link between solidification and porosity is also discussed along with its detrimental effect on the mechanical properties of metal castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... screw dislocations stacking sequence Problem 1: Low-Density Steels There is significant interest in developing low-density steels to reduce the weight of vehicles and hence their fuel consumption. One method is to dissolve light impurity atoms in Fe. Take a look at the first 20 elements...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... remelted scrap. These “secondary” compositions specify broader impurity ranges and include additional elements as impurities to reflect variations in raw materials. By contrast, primary alloys that are produced from smelted aluminum, metallurgical metals, and master alloys display more restrictive and more...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240177
EISBN: 978-1-62708-251-8
...%. The addition of alloying elements shifts the nose of the TTT diagram to the right, thus allowing thicker sections to be hardened or allowing less drastic quenches. The effect of alloying elements and section size on hardenability is illustrated in Fig. 11.7 . In this example, both the 1040 and 4140 steels...
Abstract
One of the primary advantages of steels is their ability to attain high strengths through heat treatment while still retaining some degree of ductility. Heat treatments can be used to not only harden steels but also to provide other useful combinations of properties, such as ductility, formability, and machinability. This chapter discusses various heat treatment processes, namely annealing, stress relieving, normalizing, spheroidizing, and hardening by austenitizing, quenching and tempering. It also discusses two types of interrupted quenching processes: martempering and austempering. The chapter concludes with a brief section on temper embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030167
EISBN: 978-1-62708-282-2
... of alloying elements and impurities to the grain-boundary regions. These heterogeneities, which can also develop during subsequent processing such as welding or heat treatment, can produce different electrochemical characteristics at the grain boundary relative to the grain interior and can lead...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
... are attributed to alloying elements (for example, the carbon, manganese, and silicon in carbon steels), and the detrimental effects in carbon steels are attributed to residual or impurity elements (for example, sulfur, phosphorus, and copper), depending on amount and distribution. Steel Specifications...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730037
EISBN: 978-1-62708-283-9
... 0.26 InP 1.3 0.47 0.015 Extrinsic Semiconduction The addition of even very small amounts of impurities to a semiconductor greatly increases its conductivity. For example, impurities of group V elements (nitrogen, phosphorus, arsenic, antimony, bismuth) add an extra electron, which can...
Abstract
This chapter examines some of the behaviors that suit materials for electrical and electronic applications. It begins by explaining how charge carriers move in metals and semiconductors and how properties such as conductivity, mobility, and resistivity are derived. It discusses the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
... and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.