Skip Nav Destination
Close Modal
Search Results for
impression-die forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91 Search Results for
impression-die forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... demonstrates the use of the method and compares the results with measured values. die stress forging load impression-die forging slab analysis 15.1 Introduction In hot impression-die forging, forging load and die stresses are important variables that affect die life and determine the selection...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040159
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes...
Abstract
This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes the requirements of various forging alloys, the influence of machine operating parameters, and production challenges related to lot tolerances and shape complexity. The chapter also covers the design of finisher dies, the prediction of forging stresses and loads, and the design of preform dies for steel, aluminum, and titanium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... a variety of application examples. closed-die forging finite-element analysis impression-die forging microstructure process modeling 16.1 Introduction Development of finite-element (FE) process simulation in forging started in the late 1970s. At that time, automatic remeshing...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Image
Published: 30 September 2023
Figure 11.20: Stages of die filling in impression-die forging [ 5 ]. The contours show equivalent (von Mises) strain. Reprinted by permission of Pearson Education, Inc.
More
Image
in Forging Processes: Variables and Descriptions
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Fig. 2.1 One-blow impression-die forging considered as a system: (1) billet, (2) tooling, (3) tool/material interface, (4) deformation zone, (5) forging equipment, (6) product, (7) plant environment
More
Image
in A Simplified Method to Estimate Forging Load in Impression-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Image
in A Simplified Method to Estimate Forging Load in Impression-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Fig. 15.6 Possible modes of metal flow at the end of forging stroke in impression-die forging. (a) Fictitious disk shearing. (b) Sliding in the central portion of the cavity. (c) Complete shearing in the cavity
More
Image
in Process Design in Impression-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390325
EISBN: 978-1-62708-459-8
... of metals in open-die, closed-die, and impression-die forging and in back extrusion and piercing operations. It presents various ways to achieve fluid-film lubrication in upset forging processes and examines the cause of barreling, defect formation, and folding in the upsetting of cylinders, rings...
Abstract
Forging is a deformation process achieved through the application of compressive stresses. During the stroke, pressures and velocities are continuously changing and the initial lubricant supply must suffice for the duration of the operation. Lubricant residues and pickup products also change with time, further complicating the analysis of friction and wear. This chapter provides a qualitative and quantitative overview of the mechanics and tribology of forging in all of its forms. It discusses the effects of friction, pressures, forces, and temperature on the deformation and flow of metals in open-die, closed-die, and impression-die forging and in back extrusion and piercing operations. It presents various ways to achieve fluid-film lubrication in upset forging processes and examines the cause of barreling, defect formation, and folding in the upsetting of cylinders, rings, and slabs. It also explains how to evaluate lubricants, friction, and wear under hot, cold, and warm forging conditions and how to extend die life and reduce defects when processing different materials.
Image
Published: 01 November 2013
Fig. 7 Section through a forging, die finisher impression showing flash clearance, flash land, and gutter. Source: Ref 7
More
Image
Published: 01 November 2013
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... to corrosion and oxidation) Initial conditions (composition, temperature, history/prestrain) Plastic anisotropy Billet size and thickness Fig. 2.1 One-blow impression-die forging considered as a system: (1) billet, (2) tooling, (3) tool/material interface, (4) deformation zone, (5) forging...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
... Input As discussed in Chapter 16, “Process Modeling in Impression-Die Forging Using Finite-Element Analysis,” the accuracy of finite-element (FE) process simulation depends heavily on the accuracy of the input data, namely, flow stress as a function of temperature, strain, strain rate...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
... line is at the largest cross section of the part, because it is easier to spread metal by forging than to force it into deep die impressions. If the largest cross section coincides with a flat side of a forging, the parting line could be located along the edges of the flat section, thus placing...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040141
EISBN: 978-1-62708-300-3
... (orbital) and radial forging machines. It describes their basic operating principles as well as advantages and disadvantages. cross-rolling machines orbital forging machines radial forging machines ring-rolling mills 12.1 Introduction Prior to forging in an impression die, billet stock...
Abstract
Prior to forging, it is often necessary to preform billet stock to achieve adequate material distribution. This chapter discusses the equipment used for such operations, including transverse rolling machines, electric upsetters, ring-rolling mills, horizontal presses, and rotary (orbital) and radial forging machines. It describes their basic operating principles as well as advantages and disadvantages.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.9781627083003
EISBN: 978-1-62708-300-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... that will be further processed into a closed-die geometry. Open-die forging is frequently used to shape bar and billet into a more useful distribution of material prior to closed-die forging. Useful distribution is defined as a distribution that will minimize the input weight required to fill the impression...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040211
EISBN: 978-1-62708-300-3
... forces into a variety of shapes. These shapes are usually axisymmetric with relatively small nonsymmetrical features, and, unlike impression-die forging (see Chapter 14, “Process Design in Impression-Die Forging” ), the process does not generate flash. The terms cold forging and cold extrusion...
Abstract
This chapter discusses the process of cold forging and its effect on various materials. It describes billet preparation and lubrication procedures, cold upsetting techniques, and the use of slab analysis for estimating cold forging loads. It likewise describes extrusion processes, explaining how to estimate friction and flow stress and predict extrusion loads and energy requirements. The chapter also discusses the tooling used in cold forging, the parameters affecting tool life, and the relative advantages of warm forging.
Image
Published: 30 September 2023
Figure 3.13: Examples of high interface pressure resulting from yielding in a compressive stress state. (a) Metal rolling; (b) impression or closed-die forging; (c) extrusion.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.9781627083164
EISBN: 978-1-62708-316-4
1