Skip Nav Destination
Close Modal
Search Results for
impressed-current cathodic protection systems
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 63 Search Results for
impressed-current cathodic protection systems
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2000
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910407
EISBN: 978-1-62708-250-1
... systems. The types of cathodic protection systems include sacrificial cathodic protection and impressed-current cathodic protection systems. Some of the technical problems associated with cathodic protection include the effects of stray currents on the corrosion of adjacent metal structures, the effects...
Abstract
This article describes in detail the process of corrosion control by cathodic and anodic protection. The discussion covers the basic concept of cathodic and anodic protection systems, their types and equipment used, and the advantages, limitations, and applications of these protection systems. The types of cathodic protection systems include sacrificial cathodic protection and impressed-current cathodic protection systems. Some of the technical problems associated with cathodic protection include the effects of stray currents on the corrosion of adjacent metal structures, the effects of the chemical reactions occurring at the surface of the protected structure, and the effects of cathodic protection on coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030184
EISBN: 978-1-62708-282-2
... of cathodic protection: sacrificial-anode (passive) systems and impressed-current (active) systems. Sacrificial-anode systems are simpler. They require only a material anodic to the protected steel in the environment of interest ( Fig. 1 ). Figure 5 shows an impressed-current system used to protect...
Abstract
This chapter provides a detailed account of cathodic protection. It begins by discussing the fundamentals of cathodic protection followed by a description of the various types of cathodic protection. It then describes the origins, types, and alleged failures of cathodic protection criteria. This is followed by a section providing information on anode materials that are used for cathodic protection applications. General guidelines for designing the cathodic protection systems are also listed. Finally, the chapter presents various examples on cathodic protection of steel structures. The examples are selected to familiarize the design engineer with the steps to follow in selecting a specific corrosion-control method.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870075
EISBN: 978-1-62708-299-0
... be caused by close proximity to other buried metal systems that are being protected by an impressed current cathodic protection system. These stray currents can leak onto a buried aluminum structure at one point, then off at another (where corrosion occurs), taking a low-resistance path between the driven...
Abstract
This chapter discusses three related corrosion mechanisms, galvanic, deposition, and stray-current corrosion, explaining why they occur and how they affect the corrosion process. It includes information on testing and prevention methods along with examples of the type of damage associated with these corrosion mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030180
EISBN: 978-1-62708-282-2
... reaction does not occur. Other descriptions of cathodic protection state that the currents result in the metal to be protected becoming a cathode over the entire metal surface and shifting the anodic reaction to an external electrode. In principle, any corrosion system can be cathodically protected as long...
Abstract
Anodic protection is used on a smaller scale than other corrosion control techniques due to the fundamental electrochemistry involved. This chapter provides a brief history of the technique, discusses anodic protection use, and compares anodic and cathodic protection. The background and theory of anodic protection are summarized. In addition to briefly describing the various items used for each component of an anodic protection system, the chapter presents design concerns as well as applications of the system. Factors concerning the economic justification of anodic protection are also described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060369
EISBN: 978-1-62708-261-7
.... In the past, electric railways were a major source of stray dc. Other important sources of stray current include cathodic protection systems, electrical welding machines, and other grounded dc electric sources. Stray currents are frequently encountered problems in cathodic-protection systems. Figure...
Abstract
Corrosion can be defined as a chemical or electrochemical reaction between a material and its environment that causes the material and its properties to degrade. In most cases, it refers to the electrochemical oxidation of metals accompanied by the production of oxides or salts of the base material. This chapter discusses the process of corrosion and how to prevent or mitigate its effects. It describes several forms of corrosion, including uniform, intergranular, pitting, crevice, and stray-current corrosion, and the effects of stress-corrosion cracking, corrosion fatigue, and selective leaching. It discusses the use of corrosion inhibitors, cathodic and anodic protection, pH control, and Pourbaix diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030165
EISBN: 978-1-62708-282-2
... cathodic protection (SACP). The lowering of potential can also be accomplished by applying a direct electrical current from an external source. This is impressed-current cathodic protection (ICCP). An undesired consequence of excessive cathodic protection (CP) or the use of cathodic protection...
Abstract
The basic concept for most methods of corrosion protection is to remove one or more of the electrochemical cell components so that the pure metal or metal alloy of interest will not corrode. Another widely used corrosion protection approach is to change the nature of the anode so that it becomes the cathode (cathodic protection). This chapter briefly reviews these methods of corrosion protection. The factors affecting corrosion behavior are covered. In addition, the chapter provides information on coatings and inhibitors, which are used in corrosion protection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350011
EISBN: 978-1-62708-315-7
.... This cell includes the following essential components: (a) a metal anode, (b) a metal cathode, (c) a metallic conductor between the anode and the cathode, and (d) an electrolyte in contact with the anode and the cathode. If the cell were constructed and allowed to function, an electrical current would flow...
Abstract
This chapter discusses the basic principles of corrosion, explaining how and why it occurs and how it is categorized and dealt with based on the appearance of corrosion damage or the mechanism of attack. It explains where different forms of corrosion are likely to occur and identifies metals likely to be affected. It also discusses the selection and use of protective coatings and the tests that have been developed to measure their effectiveness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030338
EISBN: 978-1-62708-282-2
.... 11 and 12 . Fig. 11 Sacrificial anode CP system with distributed magnesium anodes and an above-ground test station Fig. 12 Impressed current CP system with above-ground rectifier and a single remote anode groundbed Cathodic protection is most often used in conjunction...
Abstract
This chapter discusses the most common causes and contributing factors for external corrosion and stress-corrosion cracking on oil and natural gas pipelines, as well as describes procedures for prevention, mitigation, detection, assessment, and repair. The forms of external corrosion covered include differential cell corrosion, microbiologically influenced corrosion, and stray current corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030247
EISBN: 978-1-62708-282-2
... corrode 9 kg (20 lb) of steel. Cathodic protection systems are the most likely present-day sources of stray dc currents in production operations. More detailed discussions are available in Ref 12 and 32 . The article “ Stray-Current Corrosion ” contains information on the causes and mechanisms...
Abstract
This chapter discusses the particular corrosion problems encountered and the methods of control used in petroleum production and the storage and transportation of oil and gas up to the refinery. It begins by describing those aspects of corrosion that tend to be unique to corrosion as encountered in applications involving oil and gas exploration and production. This is followed by a section reviewing the methods of corrosion control, namely the proper selection of materials, protective coatings, cathodic protection systems, use of inhibitors, use of nonmetallic materials, and control of the environment. The chapter ends with a discussion on the problems encountered and protective measures that are based on the state-of-the-art as practiced daily by corrosion and petroleum engineers and production personnel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910497
EISBN: 978-1-62708-250-1
... protection of a metal from corrosion by making it a cathode, using ei- ther a galvanic or an impressed current. Contrast with anodic protec- tion. cathodic reaction. Electrode reaction equivalent to a transfer of nega- tive charge from the electronic to the ionic conductor. A cathodic re- action...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940127
EISBN: 978-1-62708-302-7
... corroding systems are obviously more complicated than represented by this model. Useful quantitative calculation of the distribution of current density, and hence corrosion rate along the surface, based on the polarization curves for the anodic and cathodic reactions and on the geometry of the anodic...
Abstract
This chapter develops a corrosion model that accounts for solution potentials and the effects of coupling between cathodic and anodic reactions. It begins by examining potential differences at various points (in the solution) along a path from the anode to the cathode area. It then presents a simple model of a galvanically coupled electrode, in which the metal is represented as an array of anode and cathode reaction surfaces. The chapter goes on to develop the related theory of mixed electrodes, showing how it can be used to predict corrosion rates based on measured potentials and current densities, polarization characteristics, and physical variables such as anode-to-cathode area ratios and fluid velocity. It also discusses the effect of corrosion inhibitors, galvanic coupling, and external currents, making extensive use of polarization curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... resistant metal decreases, and the surface becomes cathodic. The driving force for corrosion or galvanic current flow is the potential developed between the dissimilar metals. The extent of corrosion resulting from galvanic coupling is affected by the following factors: The potential difference...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910049
EISBN: 978-1-62708-250-1
... reactions, the mixed-potential theory, and the exchange currents. aqueous corrosion free energy electrochemical potential potential-pH diagram iron gold copper zinc aluminum titanium polarization anodic reactions cathodic reactions mixed-potential theory exchange currents ionic...
Abstract
This chapter discusses the principles of corrosion of metals in aqueous environments. The thermodynamics of aqueous corrosion is the subject of the first half of this chapter, which addresses concepts such as corrosion reactions and free-energy change, the relationship between free energy and electrochemical potential, the effect of ionic concentration on electrode potential, and the corrosion behavior of a metal based on its potential-pH diagram. The corrosion (potential-pH) behavior of iron, gold, copper, zinc, aluminum, and titanium are described. Understanding the kinetics of corrosion and the factors that control the rates of corrosion reactions requires examination of the concepts of polarization behavior and identification of the various forms of polarization in an electrochemical cell. These concepts, addressed in the remaining of this chapter, include anodic and cathodic reactions, the mixed-potential theory, and the exchange currents.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240323
EISBN: 978-1-62708-251-8
... in a process called galvanizing. The zinc coating, being more anodic than steel, corrodes preferentially to the underlying steel. This is the passive type of cathodic protection. The active (impressed-current) type is discussed in section 18.3.3, “Electrochemical Control,” in this chapter. 18.2.2 Galvanic...
Abstract
This chapter first covers some basic principles of electrochemical corrosion and then some of the various types of corrosion. Some of the more common types of corrosion discussed include uniform corrosion, galvanic corrosion, pitting, crevice corrosion, erosion-corrosion, cavitation, fretting corrosion, intergranular corrosion, exfoliation, dealloying corrosion, stress-corrosion cracking, and corrosion fatigue. The chapter discusses the processes involved in corrosion control by retarding either the anodic or cathodic reactions. The rate of corrosion is reduced by conditioning of the metal, by conditioning the environment, and by electrochemical control. Finally, the chapter deals with high-temperature oxidation that usually occurs in the absence of moisture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030380
EISBN: 978-1-62708-282-2
... to pass current to or from a test electrode. It is usually made from a noncorroding material; often called the counterelectrode. B back ll. Material placed in a drilled hole to ll space around anodes, vent pipe, and buried components of a cathodic protection system. bainite. A metastable aggregate...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.9781627082822
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910427
EISBN: 978-1-62708-250-1
.... The electrochemical potential is equivalent to the driving force for reactions, and it determines the reactions that can occur at the anode and cathode in an electrochemical cell. The current is equivalent to the reaction...
Abstract
Corrosion testing and monitoring are powerful tools in the fight to control corrosion. This chapter provides a general overview of three major categories of corrosion tests, namely laboratory tests, pilot-plant tests, and field tests. It begins with brief sections describing the purposes of corrosion tests, the logical steps in a test program, and the preparation and cleaning of test specimens. The focus then moves on to discuss the types and applications of these test categories and the associated evaluation procedures. Excluding electrochemical tests which are addressed separately in this chapter, the other laboratory tests covered under this category are simulated atmosphere tests, salt-spray tests, and immersion tests. Only corrosion testing in the atmosphere is discussed in the section on field tests. Corrosion monitoring techniques are finally considered, covering the characteristics of corrosion monitoring techniques, the factors to be considered in selecting a corrosion-monitoring method, and the strategies in corrosion monitoring.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
... surface to another part of the same surface. For a current to flow, a complete electrical circuit is required. In a corroding system ( Fig. 1 ), this circuit is made up of four components: The anode is the electrode of an electrolytic cell at which oxidation is the principal reaction. Electrons flow...
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.