Skip Nav Destination
Close Modal
Search Results for
hypoid gears
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 34 Search Results for
hypoid gears
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 September 2005
Image
Published: 01 September 2005
Image
Published: 01 September 2005
Image
Published: 01 January 2022
Image
Published: 01 June 1985
Image
Published: 01 September 2005
Fig. 2 Lines of contact on a stepped spur gear. The heavy line on a tooth face of each gear section represents the instantaneous line of contact for that section. This offset-contact pattern is typical for helical, spiral bevel, and hypoid gears. Lines on tooth faces are lines of contact.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250001
EISBN: 978-1-62708-345-4
... including prehardening processes, through hardening, and case hardening processes. bevel gears face gears gear design heat treating helical gears herringbone gears hypoid gears internal gears spiroid gears spur gears worm gears GEARS are machine elements that transmit rotary motion...
Abstract
This chapter begins with a review of some of the terms used in the gear industry to describe the design of gears and gear geometries. It then discusses the types of gears that operate on parallel shafts, intersecting shafts, and nonparallel and nonintersecting shafts. Next, the processes involved in the selection of gear are discussed, followed by information on the basic stresses applied to a gear tooth, the strength of a gear tooth, and the most widely used gear materials. Further, the chapter briefly reviews gear manufacturing methods and the heat treating processing steps including prehardening processes, through hardening, and case hardening processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420001
EISBN: 978-1-62708-452-9
... bevel sets. There are many types of spiral bevel configurations; two types are shown in Fig. 1-5 . Fig. 1-5. Two types of spiral bevel sets, consisting of spiral bevel gear and pinion. Hypoid Sets Usually the axis of the spiral bevel gear and pinion will intersect at a common point...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250089
EISBN: 978-1-62708-345-4
... proportions of the gear to be cut, plus the template list and the index gear list furnished with the machine. Formate Cutting And Helixform Cutting Formate cutting and Helixform cutting are nongenerating methods for cutting spiral bevel and hypoid gears. Nongenerating methods can be used for cutting...
Abstract
Metal removal processes for gear manufacture can be grouped into two general categories: rough machining (or gear cutting) and finishing (or high-precision machining). This chapter discusses the processes involved in machining for bevel and other gears. The chapter describes the type of gear as the major variable and discusses the machining methods best suited to specific conditions. Next, the chapter provides information on gear cutter material and nominal speeds and feeds for gear hobbing. Further, it describes the cutting fluids recommended for gear cutting and presents a comparison of steels for gear cutting. The operating principles of computer numerical control and hobbing machines are also covered. This is followed by sections that discuss the processes involved in grinding, honing, and lapping of gears. Finally, the chapter provides information on the superfinishing of gears.
Image
Published: 30 November 2013
and cause cracks that come out to the surface. By the time surface cracks are observed, however, the fatigue is well developed within the gear teeth. Large chunks can come from the surface at one time; deterioration is not gradual as in surface-origin fatigue. (b) Hypoid pinion with many long cracks
More
Image
Published: 01 November 2012
and cause cracks that come out to the surface. By the time surface cracks are observed, however, the fatigue is well developed within the gear teeth. Large chunks can come from the surface at one time; deterioration is not gradual as in surface-origin fatigue. (b) Hypoid pinion with many long cracks
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320195
EISBN: 978-1-62708-332-4
...) introduction of the hypoid gears in the automotive industry. Figure 10.25 ( Ref 7 ) is a picture of GM’s hypoid gear set. GM used hot oil as a quenching liquid and limited the quench temperature to 243 °C (469 °F). The matrix was a mixture of ausferrite and martensite with a hardness of 47 Rockwell C. Gears...
Abstract
Unlike conventional quench and temper heat treatment, austempering is an iron and steel heat-treatment process that enhances mechanical properties through the isothermal transformation of austenite with a minimum amount of quenching stresses. This chapter begins with a discussion of austemperability requirements. Then outlines of austenitizing and austempering cycles and resultant microstructures are presented. This is followed by sections discussing the mechanical properties, advantages, limitations, machinability, process variants, and applications of austempered ductile iron (ADI). Information on the growth of premachined ADI components is also provided. Further, the chapter describes two slightly different systems for austempering: atmospheric-salt and salt-salt systems. Finally, it presents general guidelines for component designers, casting manufacturers, and heat treaters to apply ADI more widely and with improved success.
Image
Published: 01 December 1999
Fig. 8.14 Comparison of bending fatigue strength of conventionally processed (cut/harden/lap) versus CBN ground (cut/harden/lap) spiral bevel gears. Test gear design specifications: hypoid design, 4.286 dp, 11 by 45 ratio, 1.60 in. face. Gears were installed in axles using a 4-square loaded
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
... on a spur gear (a), a bevel gear (b), and a low-angle helical gear (c). Lines on tooth faces of typical teeth are lines of contact. Helical, Spiral Bevel, and Hypoid Gears Gear tooth contact on helical, spiral bevel, and hypoid gears is similar to that developed on a stepped spur gear ( Fig. 2...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
... 20 For mineral oils with high concentrations of antiscuff additives (for example, hypoid gear oils), research is still needed to determine whether the scuffing temperature is dependent on the materials and operating conditions. Special attention has to be paid to the correlation between test...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420185
EISBN: 978-1-62708-452-9
... process. This failure was determined to be an isolated case and did not warrant a recall of all the gears in operation. Hypoid Pinion The hypoid pinion shown in Fig. 6-9(a) was placed on the failure analyst’s desk with the usual plea for assistance. To the analyst’s question of where the mating...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630189
EISBN: 978-1-62708-270-9
..., but not at all on worms, spiral bevel, and hypoid gears and pinions. In fact, the direction of sliding undergoes a reversal at the pitch line, as shown in Table 1 . Fig. 8 Schematic of rolling-sliding action inherent in gear teeth: (a) beginning of contact, (b) end of contact. As gear teeth contact...
Abstract
The wear caused by contact stress fatigue is the result of a wide variety of mechanical forces and environments. This chapter discusses the characteristics of four types of contact stress fatigue on mating metal surfaces: surface, subsurface, subcase, and cavitation. Features and corrective actions for these contact stress fatigue are discussed. The chapter also lists some possible ways to reduce the cavitation fatigue problem.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420027
EISBN: 978-1-62708-452-9
... bevel or hypoid gearing. Keep in mind also that the bearings may be running in the same lubricant as the gears, and they, too, require that certain characteristics are present. A constant juggle of several characteristics of an oil is necessary in order to satisfy all moving components within a system...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610461
EISBN: 978-1-62708-303-4
... a long period of service without problems. Special oils and other lubricants have been developed that form monomolecular surface films on steel surfaces. These are the extreme-pressure lubricants that are used in applications where there are high sliding velocities, such as in hypoid gear sets...
Abstract
This chapter discusses the causes and effects of wear along with prevention methods. It covers abrasive, erosive, erosion-corrosion, grinding, gouging, adhesive, and fretting wear. It also discusses various forms of contact-stress fatigue, including subsurface-origin fatigue, surface-origin fatigue, subcase-origin fatigue (spalling fatigue), and cavitation fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250139
EISBN: 978-1-62708-345-4
... be produced by the P/M process: Spur gears Bevel gears Face gears Hypoid gears Helical gears of helix angle not exceeding 35° Combination gears or multiple gears in which two or more gear forms are combined into one component are a specialty of the P/M process. Some examples of P/M...
Abstract
Powder metallurgy (P/M) is a flexible metalworking process for the production of gears. The P/M process is capable of producing close tolerance gears with strengths to 1240 MPa at economical prices in higher volume quantities. This chapter discusses the capabilities, limitations, process advantages, forms, tolerances, design, tooling, performance, quality control, and inspection of P/M gear manufacture. In addition, it presents examples that illustrate the versatility of the P/M process for gear manufacture.
1