Skip Nav Destination
Close Modal
Search Results for
hydrogen embrittlement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 371 Search Results for
hydrogen embrittlement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Static and Dynamic Fracture Toughness of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 4.22 Test results of hydrogen embrittlement cracking of iron-nickel-cobalt steels. Source: Ref 4.31
More
Image
in Stress-Corrosion Cracking of Stainless Steels[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 4.40 Time to failure by hydrogen embrittlement of two heats of as-welded AL 29-4C stainless steel in ambient temperature synthetic seawater as a function of applied potential. After Ref 4.162
More
Image
in Stress-Corrosion Cracking of Nickel-Base Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 5.37 Effect of environmental temperature on hydrogen embrittlement of alloy C-276. Environment: 4% NaCl + 05% CH 3 COOH + H 2 S (1 atm), coupled to carbon steel. Stressed to 90% yield. Alloy aged at 500 °C (930 °F) for 100 h. Source: Ref 5.41
More
Image
Published: 01 January 2000
Fig. 64 Hydrogen embrittlement failure of a 300 M steel space shuttle orbiter nose landing gear steering collar pin. The pin was heat treated to a 1895-MPa (275 ksi) strength level. The part was plated with chromium and titanium-cadmium. (a) Pin showing location of failure (actual size). (b
More
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 40 Hydrogen embrittlement failure of an ISO 10.9 low-alloy steel bolt grade. (a) As-received bolt. (b) Multiple initiation sites with secondary cracks evident. (c) Intergranular fracture along prior-austenite grain boundaries
More
Image
Published: 01 November 2012
Fig. 23 Transgranular and intergranular hydrogen embrittlement fractures. (a) Transgranular cleavage fracture in hydrogen embrittled annealed type 301 austenitic stainless steel; (b) Intergranular decohesion fracture in hydrogen embrittled 4130 steel heat treated to 1275 MPa (185 ksi). Source
More
Image
Published: 01 July 2000
Fig. 7.71 Potential ranges of stress-corrosion cracking by (I) hydrogen embrittlement, (II) cracking of unstable passive film, and (III) cracking initiated by pits near the pitting potential. Vertical dashed lines define potential range over which nonpassivating type films may crack under
More
Image
Published: 01 December 2006
Fig. 8 Hydrogen embrittlement failure of a Ti-6Al-4V helium pressure vessel used on the Saturn IV B. Similar hydriding occurred in Apollo SPS pressure vessels. (a) Failed pressure vessel due to brittle hydride formation along weld bead made with commercially pure titanium. (b) Hydride at edge
More
Image
in Advanced Techniques of Failure Analysis
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Image
in Stress-Corrosion Cracking of High-Strength Steels (Yield Strengths Greater Than 1240 MPa)[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 3.9 Schematic of slow-crack-growth kinetics in steels due to hydrogen embrittlement. (a) Growth rate as a function of applied stress intensity. (b) Stage 2 (II) growth rate as a function of temperature. Source: Ref 3.22
More
Image
Published: 01 August 2005
Fig. 16 Example of hydrogen-embrittled steel. Intergranular fracture in an AISI 4130 steel heat treated to an ultimate tensile strength of 1281 MPa (186 ksi) and stressed at 980 MPa (142 ksi) while being charged with hydrogen
More
Image
Published: 01 June 2008
Fig. 18.21 Hydrogen-embrittled steels. (a) Transgranular cleavage fracture in a hydrogen-embrittled annealed type 301 austenitic stainless steel. (b) Intergranular decohesive fracture in 4130 steel heat treated to 1280 MPa (185 ksi) and stessed at 980 MPa (142 ksi) while being charged
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130285
EISBN: 978-1-62708-284-6
... of microstructural transformation. A section describing the types of embrittlement from tempering, along with mechanical tests for the determination of temper embrittlement (TE), is presented. Various factors involved in the interaction of the TE phenomenon with hydrogen embrittlement and liquid-metal embrittlement...
Abstract
This chapter reviews the causes and cases associated with the problems originated by tempering of steels. To provide background on this phenomenon, a brief description of the martensite reactions and the steel heat treatment of tempering is given to review the different stages of microstructural transformation. A section describing the types of embrittlement from tempering, along with mechanical tests for the determination of temper embrittlement (TE), is presented. Various factors involved in the interaction of the TE phenomenon with hydrogen embrittlement and liquid-metal embrittlement are also provided. The cases covered are grinding cracks on steel cam shaft and transgranular and intergranular crack path in commercial steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
... hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
... stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided. petroleum refineries petrochemical plants materials selection...
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270196
EISBN: 978-1-62708-301-0
... Abstract Fastening screws used in fuel-injection pumps failed during assembly and were examined to determine the cause. Based on observations and the result SEM fractography and hardness measurements, the screws failed by brittle intergranular fracture due to hydrogen embrittlement associated...
Abstract
Fastening screws used in fuel-injection pumps failed during assembly and were examined to determine the cause. Based on observations and the result SEM fractography and hardness measurements, the screws failed by brittle intergranular fracture due to hydrogen embrittlement associated with plating procedures. The report includes recommendations for improving the quality of the screws.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090333
EISBN: 978-1-62708-266-2
... vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly...
Abstract
Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly passivating elements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090067
EISBN: 978-1-62708-266-2
... HRC, fall into a natural grouping in which hydrogen embrittlement is accepted as the predominant stress-corrosion cracking (SCC) mechanism. At this strength level, susceptibility to SCC is particularly acute. Environments that normally would cause minimal general corrosion, such as moist air...
Abstract
High-strength steels are susceptible to stress-corrosion cracking (SCC) even in moist air. This chapter identifies such steels and the applications where they are typically found. It provides information on crack growth kinetics and crack propagation models in which hydrogen embrittlement is the predominant mechanism. It explains how different application variables affect SCC, including loading mode, state of stress, type of steel, temperature, electrochemical potential, heat treatment, and deformation processes. It also compares SCC characteristics in different high-strength steels and discusses the influence of composition, steelmaking practice, and application environment.
1