Skip Nav Destination
Close Modal
Search Results for
hydrogen
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 944 Search Results for
hydrogen
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
...Potential problems for pressure-vessel shells (<xref ref-type="bibr" rid="t60490329-ref3">Ref 3</xref>) Table 7.1. Potential problems for pressure-vessel shells ( Ref 3 ) Microstructure and phase stability Strength Toughness Hydrogen attack Temper embrittlement (shutdown...
Abstract
This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face, and the factors that determine shell integrity. The discussion addresses key properties and design parameters including allowable stress, fracture toughness, the effect of microstructure and composition on embrittlement, high-temperature creep, and subcritical crack growth. The chapter also provides information on the factors that affect cladding integrity and ends with a section on life-assessment techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080147
EISBN: 978-1-62708-304-1
... stability diagrams. It provides an extensive amount of high-temperature corrosion data for metals and alloys in gaseous environments containing chlorine and hydrogen chloride; fluorine and hydrogen fluoride; bromine and hydrogen bromide; and iodine and hydrogen iodide. halogen gases high-temperature...
Abstract
Alloys containing elements that form volatile or low-melting-point halides are susceptible to high-temperature corrosion attack. This chapter explains how to determine whether such phases are likely to form, and the rate at which they occur, based on thermodynamic data and phase stability diagrams. It provides an extensive amount of high-temperature corrosion data for metals and alloys in gaseous environments containing chlorine and hydrogen chloride; fluorine and hydrogen fluoride; bromine and hydrogen bromide; and iodine and hydrogen iodide.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080437
EISBN: 978-1-62708-304-1
... Abstract Carbon and low-alloy steels in high-temperature service are vulnerable to the effects of hydrogen attack, which include severe loss in tensile and rupture strengths as well as ductility. As the chapter explains, when steel is in contact with hydrogen molecules at elevated temperatures...
Abstract
Carbon and low-alloy steels in high-temperature service are vulnerable to the effects of hydrogen attack, which include severe loss in tensile and rupture strengths as well as ductility. As the chapter explains, when steel is in contact with hydrogen molecules at elevated temperatures, hydrogen atoms can be absorbed at the surface and then diffuse into the metal. Hydrogen atoms in the metal then react with iron carbide forming methane gas which can accumulate at grain boundaries and other interfaces. The chapter describes two applications, one in coal-fired boilers, the other in petroleum refining, where hydrogen attack was observed. It documents the extent of the damage in each case and identifies the source of the hydrogen.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
... Abstract Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.35 Hydrogen desorption as a function of temperature for hydrogen-charged medium-carbon steel alloyed with titanium and quench and tempered at various temperatures. Source: Ref 19.109
More
Image
Published: 01 September 2008
Fig. 5 Effect of hydrogen content on hydrogen-assisted cracking (HAC) for microvoid coalescence (MVC), quasi-cleavage (QC), and intergranular (IG) fracture modes. Adapted from Beachem. Source: Ref 32
More
Image
Published: 01 January 2015
Fig. 3.13 The titanium-hydrogen phase diagram. Hydrogen is substantially soluble in the beta phase but essentially insoluble in the alpha phase at room temperature.
More
Image
in Electrochemical Thermodynamics: The Gibbs Function, Electrochemical Reactions, and Equilibrium Potentials
> Fundamentals of Electrochemical Corrosion
Published: 01 July 2000
Fig. 2.8 Dependence of hydrogen-reaction equilibrium potential on hydrogen-gas partial pressure
More
Image
in Petroleum Reactor Pressure-Vessel Materials for Hydrogen Service
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 7.14. Safe hydrogen concentration to avoid hydrogen-crack growth below 150 °C (300 °F), assuming a crack 25 mm (1 in.) deep and a stress equal to one-third of the yield strength ( Ref 4 ).
More
Image
in The Influence and Control of Porosity and Inclusions in Aluminum Castings
> Aluminum Alloy Castings: Properties, Processes, and Applications
Published: 01 December 2004
Image
Published: 01 December 2015
Fig. 23 Effect of hydrogen and combined carbon, nitrogen, or oxygen and hydrogen on the temperature dependence of ductility in vanadium. Source: Ref 36
More
Image
Published: 01 January 2015
Fig. 3.17 Diffusivity of substitutional, interstitial, and hydrogen atoms in steel as a function of temperature. Source: Ref 3.33
More
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.28 Hydrogen solubility in iron as a function of temperature and crystal structure at one atmosphere pressure of hydrogen. Source: Ref 19.93
More
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.31 Intergranular fracture in hydrogen-charged quenched 4130 steel tempered at (a) 300 °C (570 °F), and (b) 400 °C (750 °F). Source: Ref 19.105
More
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.33 Brittle transgraular fracture surface in a hydrogen-charged sample of 10B22 steel quenched to martensite and tempered at 150 °C (300 °F). The arrow points to a region of parallel steps in the fracture surface. SEM micrograph. Source: Ref 19.107
More
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.36 Nelson diagram showing resistance of various steels to hydrogen attack as a function of operating temperature and hydrogen partial pressure. Source: Ref 19.112
More
Image
Published: 01 January 2015
Fig. 21.41 Ammonia concentration in ammonia-hydrogen mixtures and temperature ranges for the formation of various Fe-N phases. Source: Ref 21.72
More
Image
in Alteration of Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 3.58 Hydrogen flakes (cracks—see arrows) found in an AISI/SAE 1080 steel bar in the (a) unetched and (b) etched condition. 4% picral etch. 1000×
More
Image
in Alteration of Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 3.59 Another example of a hydrogen flake (crack) in an AISI/SAE 1080 bar showing (a) the crack in bright-field illumination and (b) in differential interference contrast (Nomarski). Unetched. 1000×
More
Image
in Alteration of Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 3.60 An internal hydrogen flake (crack) in an AISI/SAE 1080 steel bar that was exposed to a temperature of 870 °C (1600 °F) for 5 h. The crack surface was decarburized (white area surrounding crack) by the reaction of the hydrogen with the carbon in the steel. Pearlite matrix. 4% picral
More
1