Skip Nav Destination
Close Modal
Search Results for
hydraulically powered machines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 176 Search Results for
hydraulically powered machines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040107
EISBN: 978-1-62708-300-3
...-range and speed-stroke behavior of forging equipment Speed range Forging machine ft/s m/s Speed-stroke behavior Hydraulic press 0.2 1.0(a) 0.06 0.30(a) Mechanical press 0.2 5 0.06 1.5 Screw press Gravity drop hammer Power drop hammer Counterblow hammer (total speed) HERF machines Low-speed Petroforge 2...
Abstract
Forging machines vary based on factors such as the rate at which energy is applied to the workpiece and the means by which it is controlled. Each type has distinct advantages and disadvantages, depending on lot size, workpiece complexity, dimensional tolerances, and the alloy being forged. This chapter covers the most common types of forging machines, explaining how they align with basic forging processes and corresponding force, energy, throughput, and accuracy requirements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040115
EISBN: 978-1-62708-300-3
..., ram velocities, and energy and stiffness requirements. It also includes information on gravity- and power-drop hammers and where and how they are typically used. gravity-drop hammers hydraulic presses mechanical presses power-drop hammers screw presses 11.1 Introduction...
Abstract
This chapter discusses the design and operation of forging presses and hammers. It covers the most common types of presses, including hydraulic, mechanical, and screw presses, explaining how they work and comparing and contrasting their load and displacement profiles, stroke lengths, ram velocities, and energy and stiffness requirements. It also includes information on gravity- and power-drop hammers and where and how they are typically used.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400181
EISBN: 978-1-62708-316-4
... (tank), electric motor, pump, valves, and cylinder ( Fig. 12.1 ). Hydraulic presses are more versatile than mechanical presses, because the force and stroke can be controlled easily. These presses are load-restricted machines; that is, their capability for carrying out a forming operation is limited...
Abstract
This chapter discusses the design and operation of hydraulic presses. It begins by describing the role of each major component in a hydraulic system. It then explains the difference between pump-driven and accumulator-driven presses and the types of applications for which are suited. The chapter goes on to describe the load, energy, and time-dependent characteristics of hydraulic presses and the factors that determine accuracy. It also explains how hydraulic presses are used for deep drawing, fine blanking, and hydroforming as well as warm forming and hot stamping operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040151
EISBN: 978-1-62708-300-3
... strength of the work metal (in pounds per square inch). The 33,000 is foot-pounds per minute per horsepower. For metric use, the power in English units (hp) should be multiplied by 0.746 to obtain kilowatts. It may be necessary to increase the calculated value as much as 25% to compensate for machine...
Abstract
Separation of billets by shearing avoids material loss and is considerably faster than sawing or cutting. This chapter discusses the billet shearing process, the characteristics of sheared surfaces, and the effect of various operating parameters on surface quality. It also includes formulas for calculating shearing force, work, and power and describes various ways to increase production rates.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040141
EISBN: 978-1-62708-300-3
... and are difficult to automate. The horizontal models are built in several variations depending on the application. The horizontal machines consist of a forging box with gear drive, one or two chuck heads to manipulate the workpiece, centering devices, and necessary hydraulic and electronic control components ( Fig...
Abstract
Prior to forging, it is often necessary to preform billet stock to achieve adequate material distribution. This chapter discusses the equipment used for such operations, including transverse rolling machines, electric upsetters, ring-rolling mills, horizontal presses, and rotary (orbital) and radial forging machines. It describes their basic operating principles as well as advantages and disadvantages.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
.... 2.16 ): Equipment: double-action hydraulic presses, special machines Materials: carbon and alloy steels, aluminum alloys Process Variations: high-draw technique, Marform process, rubber forming, bladder forming Application: deeply recessed parts with or without flanges, produced...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980001
EISBN: 978-1-62708-342-3
... Thomas Burr in 1820 ( Fig. 1.5 ). It had a container A, an extrusion stem with a machined-in pressure pad, a threaded mandrel, and a replaceable die B. Fig. 1.5 First hydraulic lead press (Th. Burr, 1820). A, container; B, die; C, extrusion stem with machined dummy block and threaded mandrel; D...
Abstract
This chapter provides an overview of the basic principles and historic development of metal extrusion processes. It starts by illustrating the two major process categories: direct extrusion and indirect extrusion. It then briefly defines hydrostatic extrusion and the conform process. The history coverage addresses early patents for extrusion of lead at the turn of the 17th century up through the major process innovations in the 20th century.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400129
EISBN: 978-1-62708-316-4
... of supplying the nominal machine load ( L M ), at any position of slide. Hydraulic presses belong to this category and are explained in more detail in Chapter 12, “Hydraulic Presses,” in this book. Stroke-Restricted Machines: These are usually mechanical presses, which are discussed in Chapter 10...
Abstract
This chapter discusses the design and application of sheet forming presses. The discussion covers critical variables and design parameters, key components, basic machine configurations, and energy and load requirements. The chapter also discusses time-dependent characteristics, dimensional accuracy, and stiffness as well as die change procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460227
EISBN: 978-1-62708-285-3
... unsuccessful: the thermal spray coatings suffered damage during the final machining process intended to create a smooth surface. Fig. 9.3 Fretting damage on the hydraulic pump pad on an A357 cast aluminum transmission housing. Courtesy of the Applied Research Laboratory, The Pennsylvania State...
Abstract
High-pressure cold spray repair process has been used on a number of different applications in the defense industry. This chapter describes various applications for cold spray systems that have operating pressures greater than 2.4 MPa (350 psi) and operating temperatures greater than 500 deg C (930 deg F).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060239
EISBN: 978-1-62708-355-3
... strength materials such as steels or composites but of course larger or smaller capacities can be used as necessary. Direct tension tests usually require a simple ramp function that is possible on the more economical electromechanical (screw-drive) test machine. Computer controlled servo-hydraulic test...
Abstract
This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression tests. It covers the parameters and standards related to low-temperature tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
... sawing is a cutting (machining) operation, sawing and abrasive jet cutting are covered in Chapter 5, “Machining,” in this book. Shearing of sheet and plate is broadly classified by the type of blade (cutter) used—straight or rotary. Straight-blade shearing is used for squaring and cutting flat...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400203
EISBN: 978-1-62708-316-4
...) stainless steel sinks produced using MPC technology. Source: Ref 13.11 Fig. 13.21 Schematic of hydraulic built-in die cushion system using an accumulator as power source, developed at the Engineering Research Center for Net Shape Manufacturing. Source: Ref 13.17 In-Die Systems...
Abstract
This chapter describes the various types of cushion systems used in forming presses and their effect on part quality. It begins with a review of the deep drawing process, explaining that wrinkling, tearing, and fracture are the result of excess or insufficient material flow, which can be prevented by maintaining the correct amount of holding force on the periphery of the blank. It then describes how blank holding force is generated in double-action presses and the extent to which displacement profiles can be adjusted on both the inner and outer slides. The discussion then turns to single-action presses that incorporate some type of cushion system. The chapters describes the many ways that cushion systems are implemented in forming presses and the force and displacement characteristics achievable with each method. It also explains how multipoint cushion systems are designed and how they facilitate uniform metal flow into the die cavity of large deep-drawn parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220253
EISBN: 978-1-62708-341-6
... electrically. The hydraulic type is thought to be more reliable because the quality and quantity of the air supply used to power pneumatic drives may not be consistent. Fig. 10.1 Material-handling arrangements involving a fixed coil and moving parts. (a) Continuous movement through a channel-type coil...
Abstract
Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating, bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
... to cause grain-boundary cracking but are not high enough for the cracks to be healed by dynamic recrystallization. The advantages of hot working include: Flow stresses are low; hence, forces and power requirements are relatively low. Even very large workpieces can be deformed with equipment...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400161
EISBN: 978-1-62708-316-4
... to regenerate energy when the cushion is pushed down by the upper die and slide, as shown in Fig. 11.31 . This downward motion of the cushion causes a reversal of the flow of hydraulic fluid and hence the rotation of the hydraulic pump and servo motor. This reversal of servo-motor rotation allows for power...
Abstract
This chapter discusses the design and operation of electromechanical servo-drive presses. It begins by comparing the operating flexibility of servo-press drives with that of their conventional counterparts. It then explains the difference between direct-drive and belt and screw-driven servo presses and describes some of the innovations and improvements made possible with high-torque servo motors. The chapter provides examples of how servo presses are used in blanking, warm forming, and other applications and compares the operating characteristics of two 1100-ton presses, one driven by servo motors, the other by a mechanical crank.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060065
EISBN: 978-1-62708-355-3
.... (a) Elastic proving ring with precision micrometer for deflection/load readout. (b) Load calibration of 120,000 lbf screw-driven testing machine with a proving ring Fig. 9 Load cell and digital load indicator used to calibrate a 200,000 lbf hydraulic testing machine Fig. 10 Test specimen...
Abstract
This chapter reviews the current technology and examines force application systems, force measurement, strain measurement, important instrument considerations, gripping of test specimens, test diagnostics, and the use of computers for gathering and reducing data. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment. The chapter discusses various types of testing machines and their operations. Emphasis is placed on strain-sensing equipment. The chapter briefly describes load condition factors, such as strain rate, machine rigidity, and various testing modes by load control, speed control, strain control, and strain-rate control. It provides a description of environmental chambers for testing and discusses the processes involved in the force verification of universal testing machines. Specimen geometries and standard tensile tests are also described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050293
EISBN: 978-1-62708-311-9
.... Tramp fluid buildup can occur from extraneous sources such as machining fluids on the workpieces, hydraulic oil leaks from hydraulic lines in the fixturing, and excess grease/oil that was applied to conveyors, bushings, and other lubrication points. These contaminate the water-polymer quenchant and can...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... both high-temperature resistance and chemical resistance and excellent dimensional stability. Windshield wipers Automobile window lifts Automobile seat controls Speedometers Rotary pumps Appliances Electric garage door openers Small power tools Clocks Copy machines...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
... for a specific application in an extrusion plant by the addition or removal of components, for example, a discard saw instead of a discard shear. This also applies to the power system (water or oil hydraulic). Some of the most important presses for direct extrusion are: Extrusion presses for aluminum...
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200007
EISBN: 978-1-62708-354-6
... Abstract Steel castings are produced in thousands of designs for different applications. They fill needs in many industries, including transportation, construction machinery, earthmoving equipment, rolling mills, mining, oil and gas exploration, and power generation. This chapter touches upon...
Abstract
Steel castings are produced in thousands of designs for different applications. They fill needs in many industries, including transportation, construction machinery, earthmoving equipment, rolling mills, mining, oil and gas exploration, and power generation. This chapter touches upon the variety of applications for which steel castings can be supplied and the ranges of casting size and complexity. Photographs in this chapter provide an understanding of these applications, their size and complexity, and the types of cast steels produced.
1