Skip Nav Destination
Close Modal
Search Results for
hot-work tool steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 618 Search Results for
hot-work tool steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900219
EISBN: 978-1-62708-358-4
... according to the alloying approach: chromium hot-work steels, tungsten hot-work steels, and molybdenum hot-work steels. This chapter discusses the composition, characteristics, applications, advantages, and disadvantages of each of these steels. chemical composition hardness hot-work tool steel...
Abstract
Steels for hot-work applications, designated as group H steels in the AISI classification system, have the capacity to resist softening during long or repeated exposures to high temperatures needed to hot work or die cast other materials. These steels are subdivided into three classes according to the alloying approach: chromium hot-work steels, tungsten hot-work steels, and molybdenum hot-work steels. This chapter discusses the composition, characteristics, applications, advantages, and disadvantages of each of these steels.
Image
Published: 01 December 2006
Fig. 7.107 Comparison of the 0.2% hot proof stress of the hot working tool steel 1.2343 measured in hot tensile tests between 500 and 600 °C, with the 0.2% 100 h creep stress in the same temperature region [ Güm 81 ]
More
Image
Published: 01 September 2008
Fig. 24 Tempering curves for the most common hot work tool steels. Tempering curves are obtained after hardening small (25 mm, or 1 in.) specimens of all materials with the usual hardening temperature: 1020 °C for H13, TENAX300 (brand name of low-silicon H11), and VHSUPER (brand name of high
More
Image
Published: 01 January 1998
Fig. 13-1 Schematic of the heat treatment steps for hardening hot-work tool steels with hardening temperatures higher than 900 °C (1650 °F). Source: Ref 1
More
Image
Published: 01 January 1998
Fig. 13-6 Jominy end-quench hardenability curves for chromium hot-work tool steels. Courtesy of Teledyne VASCO Curve Type Composition, % Austenitizing temperature C Si Cr W Mo °C °F 1 H12 0.35 0.92 4.76 1.42 1.45 1010 1850 2 ... 0.96 0.29 3.93
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... Abstract There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Image
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 9.45 Steel for hot working tools W.Nr 1.2365 (similar to AISI H10) with heterogeneous austenitic grain size. Martensitic structure with carbides, formed via heating to 1020 °C (1870 °F) for 0.5 h, transferred to another furnace at 700 °C (1290 °F) for 1 h air-cooled. Etchant: Villela
More
Image
in Hot Working
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 11.36 M2 high-speed tool steel (a) cast in a conventional ingot and hot worked. Carbides are fragmented and distributed in an aligned microstructure (comparable to Fig. 11.34c ). (b) Produced by powder metallurgy and hot rolled. Uniform distribution of carbides. Etchant: nital 4
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130311
EISBN: 978-1-62708-284-6
... Abstract This chapter focuses on the failure aspects of tool steels. The discussion covers the classification, chemical composition, main characteristics, and several failures of tool steels and their relation to heat treatment. The tool steels covered are hot work, cold work, plastic mold...
Abstract
This chapter focuses on the failure aspects of tool steels. The discussion covers the classification, chemical composition, main characteristics, and several failures of tool steels and their relation to heat treatment. The tool steels covered are hot work, cold work, plastic mold, and high-speed tool steels.
Image
Published: 01 September 2008
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
... include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels. air-hardening tool steel annealing austenitizing high-carbon tool steel high...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Image
Published: 01 September 2008
Fig. 9 Examples of heat treatment cracking caused by design faults in hot work tool steels. (a) Cold work punch, made of a high-speed steel, that cracked because of the large difference in section. Source Ref 1 . (b) The same for a D2 die, also assisted by poor machine finishing. Source: Ref
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410621
EISBN: 978-1-62708-265-5
... high-speed, water-hardening, shock-resistant, and hot and cold work tool steels. It discusses the influence of alloy design on the evolution of microstructure and properties during solidification, heat treating, and hardening operations. It also describes critical phase transformations and the effects...
Abstract
Tools steels are defined by their wear resistance, hardness, and durability which, in large part, is achieve by the presence of carbide-forming alloys such as chromium, molybdenum, tungsten, and vanadium. This chapter describes the alloying principles employed in various tool steels, including high-speed, water-hardening, shock-resistant, and hot and cold work tool steels. It discusses the influence of alloy design on the evolution of microstructure and properties during solidification, heat treating, and hardening operations. It also describes critical phase transformations and the effects of partitioning, precipitation, segregation, and retained austenite.
Image
Published: 01 January 1998
Fig. 13-7 Effect of austenitizing temperature on hardness of chromium hot-work tool steels. Data from Columbia Tool Steel Co. and Latrobe Steel Co. Type Composition, % Specimen size C Si Cr W Mo V H11 0.38 1.00 5.25 ... 1.35 0.50 1 (diam) × 3 in. H12 0.35 1.00
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900007
EISBN: 978-1-62708-358-4
... or hot-work tool steels), or heat treatment (for example, water-hardening or oil-hardening tool steels). Table 2-1 lists nine main groups of tool steels and their identifying letter symbols, and Table 2-2 presents the AISI classification and the nominal compositions of the most widely used tool...
Abstract
The several specific grades or compositions of tool steels have evolved over time and have been organized into useful groupings. This chapter presents the AISI classification system for tool steels, which categorizes tool steels by their alloying, applications, or heat treatment, and briefly describes the characteristics of each major group. It discusses selection criteria for tool steels, along with examples.
Image
Published: 01 December 2003
), oxidizing molten salt quench. (c) Type 304 stainless steel; 90 min at 580 °C (1075 °F), oxidizing molten salt quench. (d) AISI D2 tool steel; 90 min at 580 °C (1075 °F), oxidizing molten salt quench. (e) H13 medium-carbon hot-work tool steel; 120 min at 580 °C (1075 °F), oxidizing molten salt quench
More
Image
in Die Materials and Die Manufacturing
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Fig. 21.7 Comparison of toughness properties for H13, H21, and a new hot work tool steel, QRO80M, in function of test temperature [ Johansson et al., 1985 ]
More
Image
in Hot Working
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 11.62 (a) Shock-resistant steel ASTM A681-S7 overheated during forging (burned). Presence of oxides and evidence of start of melting (incipient fusion) at the grain boundaries. Etchant: nital 4%. (b) Hot working tool steel DIN W.Nr. 1.2885-X32 CrMoCoV 3-3-3 overheated (burned). Etchant
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310285
EISBN: 978-1-62708-326-3
... Abstract The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here...
Abstract
The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here are primarily from AISI. It presents the classification of tool steels and discusses the principles and processes of tool steel heat treating, namely normalizing, annealing, hardening, and tempering. Various factors associated with distortion in several tool steels are also covered. The chapter discusses the composition, classification, and properties of unalloyed and low-alloy cold-worked tool steels; medium and high-alloy cold-worked tool steels; and 18% nickel maraging steels.
Image
Published: 01 January 1998
Fig. 13-23 Effect of tempering temperature on dimensional changes in chromium hot-work tool steels. Values represent the average dimensional change in three principal directions of a block 25 by 50 by 150 mm (1 by 2 by 6 in.) in size. Courtesy of Latrobe Steel Co. Type Composition
More
1