1-20 of 335 Search Results for

hot salt corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2000
Fig. 13.4 Parametric (Larson-Miller type) relationships for hot salt stress-corrosion cracking of selected titanium alloys More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080249
EISBN: 978-1-62708-304-1
... temperature is believed to be the melting temperature of the salt deposit, and the upper temperature is the salt dew point ( Ref 3 ). This type of corrosion process is sometimes referred to as Type I hot corrosion to differentiate it from Type II hot corrosion, which occurs at lower temperatures (typically...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
..., and the repassivation kinetics is critical to either continued crack propagation or crack arrest. The mechanism varies slightly for hot salt stress-corrosion cracking (HSSCC). It is generally agreed that HSSCC stems from pyrohydrolytic formation of a hydrogen halide from its corresponding halide salt. This halide...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310225
EISBN: 978-1-62708-286-0
... steels thus prevails. The flexible joint is also exposed to road salt in some regions, so it must resist hot salt corrosion. This may force the use of 316L versus the normal choice of 304L. The catalytic converter is the next component of the exhaust system. It exposes the exhaust gases to noble...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080409
EISBN: 978-1-62708-304-1
... of an alloying element at hot spots and deposition of that alloying element at cooler spots. This can result in severe fouling and plugging in a circulating system. Corrosion is also strongly dependent on temperature and velocity of the salt. Corrosion can take the form of uniform thinning, pitting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
... data plotted for several nickel-base superalloys as a function of exposure time. This test actually incorporated sulfur and salt to simulate hot corrosion effects, and shows the form of such plots. Fig. 13.4 Specimen weight change during 899 °C (1650 °F) isothermal hot corrosion test...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090271
EISBN: 978-1-62708-266-2
... composition, designation, and grade of nearly two dozen commercial titanium alloys and the different types of media (including oxidizers, organic compounds, hot salt, and liquid metal) in which SCC has been observed. It discusses the mechanical and metallurgical factors that influence SCC behavior...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030025
EISBN: 978-1-62708-282-2
...; most of the corrosion encountered in turbines burning liquid fuels can be described as type I hot corrosion, which occurs primarily in the metal temperature range of 850 to 950 °C (1550 to 1750 °F). This is a sulfidation-based attack on the hot gas path parts involving the formation of condensed salts...
Image
Published: 01 November 2007
Fig. 9.3 Relative hot corrosion resistance of experimental alloys obtained from burner rig tests at 950 and 1040 °C (1750 and 1900 °F) for 100 h, using 1% S diesel fuel, 30:1 air-to-fuel ratio, and 200 ppm sea-salt injection. Source: Bergman et al. ( Ref 22 ) More
Image
Published: 01 November 2007
Fig. 9.4 Relative hot corrosion resistance of experimental alloys obtained from burner rig tests at 910, 950, and 1040 °C (1675, 1750, and 1900 °F) for 100 h, using 1% S diesel fuel, 30:1 air-to-fuel ratio, and 200 ppm sea salt injection. Source: Bergman et al. ( Ref 22 ) More
Image
Published: 01 November 2007
Fig. 9.2 Relative hot corrosion resistance of nickel- and cobalt-base alloys obtained from burner rig tests at 870, 950, and 1040 °C (1600, 1750, and 1900 °F) for 100 h, using 1% S diesel fuel, 30:1 air-to-fuel ratio, and 200 ppm sea-salt injection. Source: Bergman et al. ( Ref 22 ) More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480331
EISBN: 978-1-62708-318-8
... sensitive alloy. Hot Salt Titanium is susceptible to stress-corrosion cracking in halides at temperatures higher than 260 °C (500 °F); sodium chloride is particularly aggressive. This phenomenon, known as hot salt corrosion, is typically associated with laboratory creep testing and stress-relief heat...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900153
EISBN: 978-1-62708-350-8
... 2 to 12%, they are distinguished by their principal alloying element. All can be readily processed via gas nitriding, salt bath nitriding, or ion nitriding. Forging Dies Selection of a hot-work steel grade depends on the forge die application. For many forging steel applications, the steel...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900193
EISBN: 978-1-62708-350-8
... ). Corrosion Resistance After ferritic nitrocarburizing, steel parts can withstand many hours in a salt spray environment, whereas an untreated plain carbon steel will fail the corrosion test very rapidly. Low Distortion Another major advantage of the ferritic nitrocarburizing process...
Image
Published: 01 November 2007
Fig. 9.5 Scanning electron backscattered image showing the cross section of a corroded IC-218 nickel aluminide specimen after hot corrosion burner rig testing at 900 °C (1650 °F) for 200 h with 50 ppm sea salt using No. 2 fuel oil (0.4% S) for combustion at 35:1 air-to-fuel ratio. The results More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900201
EISBN: 978-1-62708-350-8
... ). Melonite Process The Melonite process, also known as Meli 1, uses a molten salt bath of a special composition. It provides a wear- and scuff-resistant surface on steels, sintered irons, cast irons, and similar materials. Treated parts exhibit excellent wear and corrosion resistance and good sliding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090303
EISBN: 978-1-62708-266-2
..., and strain rate affect the SCC behavior of zirconium and its alloys. It describes environments known to induce SCC, including aqueous solutions, organic liquids, hot and fused salts, and liquid metals. It also discusses cracking mechanisms and SCC prevention and control techniques. stress-corrosion...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
... Susceptibility of Metals Exposed under Stress to a Hot Salt Environment • G 42, Test Methods for Cathodic Disbonding of Pipeline Coatings Subjected to Elevated Temperatures • G 44, Practice for Evaluating Stress Corrosion Cracking Resistance of Metals and Alloys by Alternate Immersion in 3.5% Sodium...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900053
EISBN: 978-1-62708-350-8
... produced by the process is usually matte black, which is corrosion resistant. Because of emerging environmental concerns, Degussa pioneered the use of a low-cyanide salt. Kolene Corporation developed a low-cyanide salt process, now known as the Melonite process ( Ref 2 ), which offered an alternative...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350231
EISBN: 978-1-62708-315-7
... with sulfur com- pounds and other contaminants, such as chlorides, to form a molten salt on a metal surface that fluxes, destroys, or disrupts the normal protec- tive oxide. See also gaseous corrosion. hot dip. Covering a surface by dipping the surface to be coated into a molten bath of the coating material...