Skip Nav Destination
Close Modal
Search Results for
hot extrusion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 310 Search Results for
hot extrusion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
... Abstract The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers...
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Image
Published: 01 December 2006
Fig. 3.47 Material flow (extrusion stages) in indirect hot extrusion without a shell and without lubrication of CuZn42 billets with container diam D 0 = 110 mm
More
Image
Published: 01 November 2013
Image
Published: 01 December 2006
Fig. 3.2 Process sequence of direct hot extrusion without lubrication and without a shell, with loose dummy block. a, platen; b, die holder; c, die; d, container; e, billet; f, dummy block or pressure pad; g, extrusion stem
More
Image
Published: 01 December 2006
Fig. 3.3 Process sequence of direct hot extrusion without lubrication and without a shell, with dummy block fixed to the stem. a, platen; b, die holder; c, die; d, container; e, billet; f, dummy block or pressure pad; g, extrusion stem
More
Image
Published: 01 December 2006
Fig. 3.4 Billet-on-billet direct hot extrusion without lubrication and without a shell, with dummy block fixed to the stem. a, platen; b, die holder; c, die; d, container; e, billet; f, dummy block; g, extrusion stem; h, discard from the previous extrusion
More
Image
Published: 01 December 2006
Fig. 3.9 Material flow zones in direct hot extrusion without lubrication and without a shell. A, primary deformation zone; B, secondary deformation zone; C, friction affected peripheral zone; D, dead metal zone; E, billet core; a, container; b, die; c, die holder; d, dummy block; e, stem; f
More
Image
Published: 01 December 2006
Fig. 3.25 Process sequence in direct hot extrusion without lubrication and with a shell of copper alloys. a, platen; b, die holder; c, die; d, container; e, billet; f, dummy block; g, extrusion stem; h, cleaning billet; i, discard tube; k, shell; l, discard
More
Image
Published: 01 December 2006
Fig. 3.27 Stages in the direct hot extrusion with a shell of the alloy CuCo 2 Be (Source: K. Müller, Srangpreβzentrum Berlin)
More
Image
Published: 01 December 2006
Image
Published: 01 December 2006
Fig. 3.32 Principal variation in the exit temperature ϑ S for direct hot extrusion with lubrication and without a shell for the initial billet temperature ϑ B that is much higher than the container temperature ϑ R (e.g., the direct hot extrusion with lubrication and without a shell of steel)
More
Image
Published: 01 December 2006
Fig. 3.38 Process sequence in indirect hot extrusion without a shell. a, press platen; b, hollow stem holder; c, hollow stem; d, die; e, billet; f, container; g, sealing stem. See [ Bis 73 ].
More
Image
Published: 01 December 2006
Fig. 3.48 Material flow in indirect hot extrusion without a shell and without lubrication. (a) Material AlMg3; extrusion ratio V ges = 50; initial billet length l b = 500 mm; container diam D 0 = 140 mm. (b) Principal depiction of billet zones in indirect extrusion without lubrication
More
Image
Published: 01 December 2006
Fig. 3.49 Removed aluminum shell in indirect hot extrusion with a shell and without lubrication. (a) Upset in the container on removal. (b) Partly upset [ Zie 73 ]
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980417
EISBN: 978-1-62708-342-3
... Abstract This chapter begins with a description of the requirements of tooling and tooling material for hot extrusion. It covers the processes of designing tool and die sets for direct and indirect extrusion. Next, the chapter provides information on extrusion tooling and die sets for direct...
Abstract
This chapter begins with a description of the requirements of tooling and tooling material for hot extrusion. It covers the processes of designing tool and die sets for direct and indirect extrusion. Next, the chapter provides information on extrusion tooling and die sets for direct external and internal shape production and tools for copper alloy extrusion. Further, it addresses design, calculation, and dimensioning of single-piece and two-part containers and describes induction heating for containers. Information on static- and elastic-based analysis and dimensioning of containers loaded in three dimensions is provided. Examples of calculations for different containers, along with their stresses and dimensions, are presented and the manufacture, operation, and maintenance of containers are described. The chapter further discusses the properties and applications of hot working materials for the manufacture of extrusion tooling and of different extruded materials for the manufacture of extrusion tooling for direct and indirect forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
..., including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Image
Published: 01 December 2006
Fig. 3.8 Stage in hot direct extrusion of AlMg3 without lubrication and without a shell (container diam = 140 mm; extrusion ratio V = 50; initial billet length = 450 mm; initial billet temperature = container temperature = 450 °C)
More
Image
Published: 01 December 2006
Fig. 3.89 Process sequence for direct hot tube extrusion without a shell over a fixed mandrel [ Bis 75 ]
More
Image
Published: 01 December 2006
Fig. 3.90 Process sequence for direct hot tube extrusion with a shell over a moving mandrel [ Zil 77 , Bis 75 , Bis 77]
More
Image
Published: 01 December 2006
Fig. 3.91 Direct hot tube extrusion over a fixed mandrel (e.g., of aluminum) without lubrication. D 0 , container diam; D DS , mandrel bar diam; D a , tube external diam; D i , tube internal diam; F St , stem load; F D , mandrel load; l 0 , upset billet length; l R , discard
More