Skip Nav Destination
Close Modal
Search Results for
hot dipping
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 150 Search Results for
hot dipping
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
..., application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion...
Abstract
Organic coatings (paints and plastic or rubber linings), metallic coatings, and nonmetallic inorganic coatings (conversion coatings, cements, ceramics, and glasses) are used in applications requiring corrosion protection. These coatings and linings may protect substrates by three basic mechanisms: barrier protection, chemical inhibition, and galvanic (sacrificial) protection. This chapter begins with a section on organic coating and linings, providing a detailed account of the steps involved in the coating process, namely, design and selection, surface preparation, application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation, and laser processing. The last section focuses on nonmetallic inorganic coatings including ceramic coating materials, conversion coatings, and anodized coatings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
...Abstract Abstract This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
...Properties of alloy layers of hot-dip galvanized steels Table 3 Properties of alloy layers of hot-dip galvanized steels Layer Alloy Iron, % Melting Point Crystal structure Diamond pyramid microhardness Alloy characteristics °C °F Eta (η) Zinc 0.03 419 787 Hexagonal 70...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700059
EISBN: 978-1-62708-279-2
... for continuously annealed or hot dipped coated products. The mechanical properties in steels are determined by their chemical composition and microstructure. Table 3.4 shows the mixture of microstructure and the resulting properties of the first generation of AHSS. It is important to note that the second...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350001
EISBN: 978-1-62708-315-7
... resistance and heat resistance Hot-dip galvanizing (zinc coatings) Improved corrosion resistance via sacrificial protection of steel substrate Hot-dip aluminizing Improved corrosion and oxidation resistance of steel substrate Hot-dip lead-tin alloy-coatings (terne coatings) Improved corrosion...
Abstract
This chapter begins with a brief review of the different types of surface treatments and coatings used in industry and their effect on properties and performance. It then discusses the importance of corrosion and wear treatments and the consequences of failing to properly implement them in critical industries such as mining, energy production, transportation, and mineral and chemical processing. The chapter also describes basic approaches to dealing with corrosion and wear in steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.9781627083157
EISBN: 978-1-62708-315-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700095
EISBN: 978-1-62708-279-2
... microstructure and in the end the dual microstructure of ferrite and martensite is produced. Dual-phase microstructure can also be produced in cold rolled sheet products by the application of continuous annealing followed by hot dip galvanizing. A schematic diagram of the thermal history during the annealing...
Abstract
Dual-phase (DP) steels have the widest usage in automotive industry because of their excellent combination of strength and ductility. This chapter provides an overview of the composition, microstructure, processing, deformation mechanism, mechanical properties, formability, and special attributes of DP steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350195
EISBN: 978-1-62708-315-7
... is in contact with another metallic component of a dissimilar material, then galvanically assisted corrosion, which accelerates failure, is very possible. Outdoor, Normal Atmospheric Corrosion For outdoor, normal atmospheric corrosion, consider: Hot dip galvanizing, which can provide prolonged...
Abstract
This chapter provides helpful guidelines for selecting a surface treatment for a given application. It identifies important design factors and applicable treatments for common design scenarios, materials, and operating conditions. It explains why heat treatments and finishing operations may be required before or after processing and how to estimate or predict coating thickness, case depth, hardness, and the likelihood of distortion. It also addresses related issues and considerations such as part handling and fixturing, surface preparation and cleaning requirements, processability, aesthetics, and the influence of design features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080423
EISBN: 978-1-62708-304-1
... field testing in a hot dip galvanizing tank at 455 °C (850 °F) for a total of 152 h (19 runs). Source: Ref 12 Abstract Abstract Liquid metals are frequently used as a heat-transfer medium because of their high thermal conductivities and low vapor pressures. Containment materials used...
Abstract
Liquid metals are frequently used as a heat-transfer medium because of their high thermal conductivities and low vapor pressures. Containment materials used in such heat-transfer systems are subject to molten metal corrosion as well as other problems. This chapter reviews the corrosion behavior of alloys in molten aluminum, zinc, lead, lithium, sodium, magnesium, mercury, cadmium, tin, antimony, and bismuth. It also discusses the problem of liquid metal embrittlement, explaining how it is caused by low-melting-point metals during brazing, welding, and heat treating operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170520
EISBN: 978-1-62708-297-6
... chemicals. In the corrosion-protection category, hot dip or continuous galvanizing accounts for the majority of zinc consumption (Hot dip zinc and zinc alloy coatings are described in Surface Engineering , Volume 5, of ASM Handbook .) Almost all of the zinc used in zinc casting alloys is used in die...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410315
EISBN: 978-1-62708-265-5
... and the attendant strength loss during hot dip galvanizing at 450 °C (840 °F). Nam and Bae confirm that coarse pearlite lowers delamination resistance and note that globular cementite particles contribute to the initiation of delamination ( Ref 15.51 ). Low-temperature aging or stress relief treatments of patented...
Abstract
This chapter describes the mechanical properties of fully pearlitic microstructures and their suitability for wire and rail applications. It begins by describing the ever-increasing demands placed on rail steels and the manufacturing methods that have been developed in response. It then explains how wire drawing, patenting, and the Stelmor process affect microstructure, and describes various fracture mechanisms and how they appear on steel wire fracture surfaces. The chapter concludes by discussing the effects of torsional deformation, delamination, galvanizing, and aging on patented and drawn wires.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... plate 2000 Hot dip galvanized 1000 Hot dip aluminized 500 PVD TiN 2 Plasma sprayed ceramic 10 High-velocity oxyfuel cermet 1000 Spray and fused nickel-chromium 2000 Slurry/sinter formed ceramic <2000 Aluimnum alloy 6082 5 Anodized 300 Anodized + polymer in-fill...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
... compared to ungalvanized steel. Among the different surface treatments, galvannealing resulted in less galling and lower friction. Sakare et al. ( Ref 6.26 ) conducted U-bend tests to evaluate friction and galling in forming DP 600 with and without hot dip galvanized coating and different tool materials...
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030165
EISBN: 978-1-62708-282-2
... a barrier between the metal substrate and the environment. In addition, metallic coatings can sometimes provide cathodic protection when the coating is compromised. Metallic coatings and other inorganic coatings are produced using a variety of techniques, including hot dipping, electroplating, cladding...
Abstract
The basic concept for most methods of corrosion protection is to remove one or more of the electrochemical cell components so that the pure metal or metal alloy of interest will not corrode. Another widely used corrosion protection approach is to change the nature of the anode so that it becomes the cathode (cathodic protection). This chapter briefly reviews these methods of corrosion protection. The factors affecting corrosion behavior are covered. In addition, the chapter provides information on coatings and inhibitors, which are used in corrosion protection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
... by such processes as plating, cladding, nitriding, ion implantation, carburizing, and hot dip galvanizing, this book is limited to only those alloying processes that affect the bulk of the material, while surface modification is discussed in other ASM publications. This book, however, does cover the addition...
Abstract
This article discusses the general purpose of alloying and identifies some of the material properties and behaviors that can be improved by adding various elements to the base metal. It explains how alloying can make metals stronger and more resistant to corrosion and wear as well as easier to cast, weld, form, and machine. It also discusses some of the alloying techniques that have been developed to address problems stemming from dissimilarities between the base metal and alloying or inoculate material.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.9781627082822
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
..., PA, 19103 • A 143, Practice for Safeguarding against Embrittlement of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embrittlement • A 262, Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels • A 763, Practices...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400073
EISBN: 978-1-62708-316-4
... of impact-resistant pure zinc. The resulting coated steel can be used in much the same way as uncoated steel. A large amount of galvanized steel is used by the automotive industry for exposed and unexposed panels. Galvannealed steels are those that are given a secondary heat treatment after the hot dip...
Abstract
This chapter describes the formability and forming characteristics of low-carbon sheet steels, coated sheet steels, stainless steels, and aluminum and magnesium alloys. It provides property data as well as flow stress curves for numerous grades of each material and explains how composition, microstructure, and processing methods influence forming behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410233
EISBN: 978-1-62708-265-5
... for automotive panel applications are now zinc-coated and offer outstanding corrosion protection. The zinc may be applied by hot-dip galvanizing or electrodeposition, and zinc coatings may be heated to produce beneficial layers of Zn-Fe intermetallic phases in a process designated as galvannealing . Hot-dip...
Abstract
This chapter discusses various alloying and processing approaches to increase the strength of low-carbon steels. It describes hot-rolled low-carbon steels, cold-rolled and annealed low-carbon steels, interstitial-free or ultra-low carbon steels, high-strength, low-alloy (HSLA) steels, dual-phase (DP) steels, transformation-induced plasticity (TRIP) steels, and martensitic low-carbon steels. It also discusses twinning-induced plasticity (TWIP) steels along with quenched and partitioned (Q&P) steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400215
EISBN: 978-1-62708-258-7
... . However, for most steels and cast irons, the metallographer needs to become familiar with only a few etchants. The Need to Etch a Specimen Many times, a problem can be solved when a proper etch is applied to a specimen. For example, a hot-cracking problem occurred in a type 309 stainless steel weld...
Abstract
This chapter discusses the important aspects that a metallographer should understand in order to effectively reveal a microstructure. It begins by exploring etching response and how it can be a tool for revealing various microstructural features. The next part of the chapter discusses methods for revealing microstructure in the as-polished (unetched) specimen, then guidelines for selecting and using etchants when needed. The chapter discusses different types of etchants in terms of their ingredients, etching procedure, and major uses. The etchants discussed include basic etchants (nital and picral and their variations) and tint etchants for carbon and low-alloy steels and cast irons, and basic etchants for stainless steels. Finally, information is provided on different illumination methods (differential interference contrast and dark-field illumination) that can be used to highlight certain features in microstructures.