Skip Nav Destination
Close Modal
Search Results for
hole flanging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 134 Search Results for
hole flanging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Classification and Description of Sheet Metal Forming Operations
> Sheet Metal Forming: Fundamentals
Published: 01 August 2012
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500019
EISBN: 978-1-62708-317-1
... conditions. It describes the basic principles of air bending, stretch bending, and U- and V-die bending as well as rotary, roll, and wipe die bending, also known as straight flanging. It also discusses the steps involved in contour (stretch or shrink) flanging, hole flanging, and hemming and describes...
Abstract
This chapter begins with a review of the mechanics of bending and the primary elements of a bending system. It examines stress-strain distributions defined by elementary bending theory and explains how to predict stress, strain, bending moment, and springback under various bending conditions. It describes the basic principles of air bending, stretch bending, and U- and V-die bending as well as rotary, roll, and wipe die bending, also known as straight flanging. It also discusses the steps involved in contour (stretch or shrink) flanging, hole flanging, and hemming and describes the design and operation of press brakes and other bending machines.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
... forming processes Bending and straight flanging processes ( Section 2.4 ) Brake bending Hemming Roll Forming Roll Bending Tube Bending Flanging Hole Flanging Joggling Blank Preparation ( Section 2.5 ) Sheet leveling and straightening Shearing, blanking...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400233
EISBN: 978-1-62708-316-4
..., commonly formed for rein- forcement. (2) Stationary platen of a press to which the lower die assembly is attached. (3) Stationary part of the shear frame that sup- ports the material being sheared and the fixed blade. beaded flange A flange reinforced by a low ridge, used mostly around a hole. bellmouth...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.9781627083164
EISBN: 978-1-62708-316-4
Image
Published: 01 August 2013
Fig. 13.4 Schematic illustration of forming a cup from sheet metal. (a) A descending punch forces the sheet through a circular hole in the die. A hold-down plate prevents buckling. (b) The major deformation is the circumferential contraction of the flange so that it can pass over the die lip
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270126
EISBN: 978-1-62708-301-0
... and showed large blow holes formed during subsequent solidification of the molten metal. One of the fastening holes at the flange had burned and melted and was found elongated. Fig. CH26.1 Damaged fuel nozzle Testing Procedure and Results Metallography and Hardness To determine the extent...
Abstract
A test flight was cut short after a fire warning came on indicating a problem with one of the four engines on an aircraft. A visual examination following the precautionary landing revealed several burned hoses, a melted bolt, and fuel leaking from the base of the main burner. The fuel nozzle was also damaged, and based on its microstructure, came very close to melting. Investigators determined that the burner was mounted backwards, facing the compressor rather than the turbine. They also recommended a redesign to prevent the fuel nozzle from being reversed.
Image
Published: 01 August 2012
Fig. 2.37 Schematic of a hole expansion test with a conical punch used to evaluate how far a sheet sample can be flanged without fracture. Source: Ref 2.25
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930141
EISBN: 978-1-62708-359-1
... ( 1 2 in. < R ≤ 1 in.) Axial Corner of hole 30 Longitudinal attachments to plate Axial Plate at end of weld 30A Longitudinal attachments to plate Bending Plate at end of weld 31 Attachments of plate to edge of flange Bending Flange at end of weld 31A Lateral...
Abstract
This article is intended to help engineers understand why the fatigue behavior of weldments can be such a confusing and seemingly contradictory topic and hopefully to clarify this complex subject. It first reexamines the factors influencing the fatigue behavior of an individual weldment using extensive experimental data and a computer model that simulates the fatigue resistance of weldments. Next, the process of fatigue in weldments is discussed in general terms, and the service conditions that favor long crack growth and the conditions that favor crack nucleation are contrasted. The article then presents experimental data that show the effect of weldment geometry on fatigue resistance. Several useful geometry classification systems are compared. Finally, a computer model is employed to investigate the behavior of two hypothetical weldments: a discontinuity-containing ("Nominal") weldment and a discontinuity-free ("Ideal") weldment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270084
EISBN: 978-1-62708-301-0
... Abstract An aircraft tire burst while inflating, causing one of the flanges on the wheel hub to fracture. This chapter provides a summary of the investigation along with key findings. It includes images of the damaged hub and describes how various parts failed as the pressure in the tire...
Abstract
An aircraft tire burst while inflating, causing one of the flanges on the wheel hub to fracture. This chapter provides a summary of the investigation along with key findings. It includes images of the damaged hub and describes how various parts failed as the pressure in the tire increased. It explains that the hub material was of good quality under uniform load and that it fractured quickly by cleavage due to the force exerted by the overinflated tire.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700071
EISBN: 978-1-62708-279-2
... Hole Expansion Stretch flanging or edge stretchability is a common feature in automotive stampings because it corresponds to cut-outs for windows and other openings. In stretch flanging, a tensile strain is imposed on the sheared edge causing splitting of the flange ( Fig. 4.19 ). The sheared edge...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410081
EISBN: 978-1-62708-482-6
... 1400). Fig. 4.18 Variation of cup height with strength for various types and grades of steels. DP, dual phase; M, martensitic. Source: Ref 4.11 Hole Expansion Stretch flanging or edge stretchability is a common feature in automotive stampings because they correspond to cutouts...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
.... Because of its resistance to galling, it is less desirable for forming carbon and stainless steels than for aluminum and copper alloys. Cast steel is also useful for restrike, flanging, and other types of dies that are less likely to gall or pick up metal from the sheet. Tool Steels Tool steels...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
... stretch flanging of AHSS, edge cracking may occur. The tendency of a steel to edge crack is usually determined by using hole flanging experiments, as seen in Fig. 6.18 . In general, the hole expansion ratio ( D / d , where d is the initial hold diameter, and D is the hole diameter after the hole...
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000185
EISBN: 978-1-62708-312-6
.... With the improvement of corrosion-resistance properties, and three major automotive uses—antilock brake system sensor rings, exhaust system flanges, and oxygen sensor bosses—the market distribution of sintered stainless steels has shifted to an automotive preponderance, as is typical of the powder metallurgy (PM...
Abstract
This chapter discusses the growing use of sintered stainless steels in automotive applications and various types of filters and filtering media. It also describes how these materials are produced in the form of metal foams and cellular structures and how they serve as flake pigments in corrosion-resistant coatings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
... and components Table 1 Failure analysis of steel forgings and components Case study Defect Solution Crankshaft underfill Unable to fill crankshaft flanges with existing press capacity Introduce creep stages for last increment of displacements Tube bending Unable to control exterior wall...
Abstract
This article presents six case studies of failures with steel forgings. The case studies covered are crankshaft underfill; tube bending; spade bit; trim tear; upset forging; and avoidance of flow through, lap, and crack. The case studies illustrate difficulties encountered in either cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design, and forging tolerances. Wear, plastic deformation processes, and laws of friction are introduced as a group of subjects that have been considered in the case studies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... sources of porosity. Inspection revealed that the mating flanges were covered with thick mill scale and were neither ground clean nor pre-heated prior to welding. The welding electrode and flux combination was F7A2-EM12K. Normally, this flux/wire combination is designed to be tolerant of light rust...
Abstract
Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein cracking, and hydrogen-assisted reduced ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200144
EISBN: 978-1-62708-354-6
... lb, Figure 10-17 . Prior to redesign the end flanges were machined on both front and back faces and 8 holes were drilled per end. Pattern tooling was redesigned with four cavities in a 30.5 × 42 6/5.5 no bake mold. Flange cores are assembled to the body core and core assemblies are set in the mold...
Abstract
Parts of machines and equipment that have previously been designed as wrought or fabricated parts, or as cast parts of metals other than steel, are often reconsidered as steel castings. This chapter presents bending test data for several junction designs of L and box sections and discusses redesign from fabrication, forgings, and cast iron. The chapter also includes the benefits of redesign.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730139
EISBN: 978-1-62708-283-9
... to a final shape by a shaped punch ( Fig. 13.3 ). Draw beads control how much material from the flange is drawn into the die. Wrinkling of the finished part results if too much material is allowed to flow into the die. It should be emphasized that in stamping processes the sheet is not squeezed between...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320063
EISBN: 978-1-62708-332-4
... recommending locator positioning; advising about lugs, hooks, or holes for casting handling through all processes; determining the choice of a parting plane and pouring orientation; designing cores for accurate positioning, suitable venting, and proper cleaning; guiding decisions about wall thicknesses...
Abstract
The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include recommending locator positioning; advising about lugs, hooks, or holes for casting handling through all processes; determining the choice of a parting plane and pouring orientation; designing cores for accurate positioning, suitable venting, and proper cleaning; guiding decisions about wall thicknesses and junctions; making suggestions about casting design to eliminate distortion; optimizing the gating design for slag-free metal; and establishing the feeding techniques to eliminate shrink porosity. This chapter provides the guidelines for these responsibilities. In addition, the guidelines for the use of chaplets and chills in cast iron castings; guidelines for drafts, machine stock, tolerances, and contraction or shrink rule; and guidelines for pattern layouts and nesting are also covered.
1