Skip Nav Destination
Close Modal
Search Results for
hip implants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42 Search Results for
hip implants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300363
EISBN: 978-1-62708-323-2
... in the human body. In 2016, there were more than 600,000 knee implants performed in the United States at an average cost of $40,000 each. Thus, this operation alone produced a $24 billion industry. The number of hip implants was higher, and these operations usually cost more. These are significant industries...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120039
EISBN: 978-1-62708-269-3
... Cast titanium alloy knee and hip implants Design Considerations There are a number of broad guidelines to be followed when designing titanium castings: The supplier and customer must work together to identify the desired properties and to define the intended shape. The design must...
Abstract
Titanium castings are used in a wide range of aerospace, chemical process, marine, biomedical, and automotive applications. This chapter provides an overview of titanium casting and associated processes and how they compare with other manufacturing methods. It also discusses the role heat treating and its effect on the tensile properties of different titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270005
EISBN: 978-1-62708-301-0
... as well as assembly errors, abnormal operating conditions, and inadequate maintenance. It also describes the precise usage of terms such as defect, flaw, imperfection, and discontinuity. failure analysis hip implants I beams manufacturing defects piston heads porcelain insulators quill shafts...
Abstract
This chapter identifies the primary causes of service failures and discusses the types of defects from which they stem. It presents more than a dozen examples of failures attributed to such causes as design defects, material defects, and manufacturing or processing defects as well as assembly errors, abnormal operating conditions, and inadequate maintenance. It also describes the precise usage of terms such as defect, flaw, imperfection, and discontinuity.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
... with about 30% porosity and typical pore size ranging from 0.05 mm. The technology allows for tight control of particle size, porosity, and thickness. Coatings up to 1.25 mm (0.05 in.) are deposited on hip implants, but dental implants are much thinner. These materials are typically sprayed by low-pressure...
Abstract
This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods. Examples are provided of the applications in aerospace, automotive, and medical device industries as well as the use of thermal spray as an additive manufacturing technique.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040001
EISBN: 978-1-62708-428-4
... to extend human lifespans, medical implants will become more common and thermal spray applications will play a bigger role. One key area where thermal spray technology is playing a role is as an inert surface for bone and tissue growth. Coatings have been used to support the advancement of knee and hip...
Abstract
This article provides a high-level overview of thermal spray technologies and their applications and benefits. It is intended to educate members of government, industry, and academia to the benefits of thermal spray technology. The article describes the value of thermal spray technology with examples of application success stories. A few applications critical to thermal spray and market growth are briefly discussed. The article also summarizes the key research areas in thermal spray technology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
... metallurgy, hot isostatic pressing (HIP) plus forging, and direct HIP to produce a near-net shape part. Actual raw material savings will depend on the P/M route chosen and the complexity of the component being produced. Dollar savings will reflect: Increased alloy cost in powder versus cost as ingot...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
... at acceptable levels. Therefore, fatigue-critical cast parts are always HIPed, regardless of whether they are for airframe components, engine parts, or orthopedic surgical body implants. Some casting houses do not HIP all products unless specified by the user, because for many marine or chemical process...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... and producing a two-phase structure at room temperature. The excellent corrosion resistance of titanium allows applications in chemical processing equipment, marine components, and biomedical implants such as hip prostheses. Titanium is an important aerospace material, finding applications as airframe...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... nickel-phosphorus plating, ferritic nitrocarburizing, sulfurizing, and spark hardening Fig. 16 Compares the wear, scuffing, and spalling resistance of sheet-metal dies coated by the following surface-hardening processes: uncoated, nitrided, borided, nitrogen ion implanted, chrome plated, sulfurized...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
... high-performance application areas, such as aerospace and sporting goods (e.g., golf club heads and racing bicycles) applications, biomedical implants, and other industrial and marine corrosion service, will pay for the higher price of titanium alloy components. However, the initial cost of titanium...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120143
EISBN: 978-1-62708-269-3
... Brinell hardness HE Hot extruded Heat Heat HF Hot finished HIP Hot isostatic pressing HR Hot rolled HT Heat treated HW Hot worked/wrought Imp Implant Inv Investment Liq Liquid Mach Machined Mart Martensitic Met Metal Mult Multiple NHT Not heat...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120005
EISBN: 978-1-62708-269-3
... and strength reasons, there is a benefit for structural implants such as hip stems because the lower modulus (than cobalt alloys and stainless) allows more load transfer to the bone and the potential for longer-lasting implant performance. The Titanium Alloys For most of the last half of the twentieth...
Abstract
Titanium is a lightweight metal with a density approximately 60% that of steel and, through alloying and deformation processing, it can be just as strong. It is readily available in many grades and forms and can be further processed using standard methods and techniques. This chapter provides a concise review of the capabilities of titanium and its design advantages over other materials. It includes information on properties and selection factors as well as applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730059
EISBN: 978-1-62708-283-9
... is a problem. Because titanium is inert to human body fluids, it is an ideal metal for medical replacement structures such as hip and knee implants. Titanium actually allows bone growth to adhere to the implants, thus titanium implants are more durable than those made of other materials. The only major use...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.9781627083232
EISBN: 978-1-62708-323-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
.... Originally, knee and hip implants were designed for patients in their 60s who led a reserved, nonactive life. The idea was to design a permanent implant capable of providing a normal lifestyle prior to death. Research concentrated on how to make bone grow into the implants for a more secure fixture. Today...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.9781627082693
EISBN: 978-1-62708-269-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120139
EISBN: 978-1-62708-269-3
...: none, TiMetal 62S and 62S With iron as a beta stabilizer, alloy 62S has lower formulation costs with processing and property characteristics similar to Ti-6Al-4V. Practical substitute for Ti-6Al-4V Ti-6Al-7Nb, UNS: none, IMI 367 IMI 367 was developed specifically for femoral components for hip...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350195
EISBN: 978-1-62708-315-7
... Ion implantation for improved wear resistance of alloy tool steels and chrome-plated parts Anodizing plus PTFE seal for nonstick and wear resistance with aluminum alloy parts Die Casting For die casting, consider: Nitriding for H-series tool steels Physical vapor deposition (PVD...
Abstract
This chapter provides helpful guidelines for selecting a surface treatment for a given application. It identifies important design factors and applicable treatments for common design scenarios, materials, and operating conditions. It explains why heat treatments and finishing operations may be required before or after processing and how to estimate or predict coating thickness, case depth, hardness, and the likelihood of distortion. It also addresses related issues and considerations such as part handling and fixturing, surface preparation and cleaning requirements, processability, aesthetics, and the influence of design features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480353
EISBN: 978-1-62708-318-8
Abstract
This chapter describes the applications with the greatest impact on titanium consumption and global market trends. It explains where, how, and why titanium alloys are used in aerospace, automotive, chemical processing, medical, and military applications as well as power generating equipment, sporting goods, oil and gas production, and marine vessels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350095
EISBN: 978-1-62708-315-7
... cementation. The chapter also covers ion implantation and laser alloying. anodizing conversion coating diffusion coating pack cementation SURFACE TREATMENTS that change the surface chemistry of a metal or alloy, but that do not involve intentional buildup or increase in part dimension, include...
Abstract
This chapter provides practical information on surface treatments that work by altering the surface chemistry of metals and alloys. It discusses the use of phosphate and chromate conversion coatings as well as anodizing, steam oxidation, diffusion coatings, and pack cementation. The chapter also covers ion implantation and laser alloying.