1-20 of 799

Search Results for high-nickel alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030074
EISBN: 978-1-62708-282-2
... readily weldable. There are two large groups of the commercial nickel-base alloys. One group was designed to withstand high-temperature and dry or gaseous corrosion, while the other is mainly dedicated to withstanding low-temperature aqueous corrosion. Nickel-base alloys used for low-temperature...
Image
Published: 01 November 2007
Fig. 7.28 Corrosion rates of high-nickel alloys in the MPC coal gasification atmosphere with 1.0 and 1.5% H 2 S (see Table 7.4 and 7.5 for gas composition). Source: Ref 60 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... Abstract Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis...
Image
Published: 01 June 1983
Figure 4.31 Thermal conductivity of high-temperature nickel alloys. More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820203
EISBN: 978-1-62708-339-3
... corrosion of weldments are used to assess intergranular corrosion of stainless steels and high-nickel alloys. Other applicable tests evaluate pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion. Each of these test methods is reviewed in this chapter...
Image
Published: 01 November 2007
C 3 , (c) continued carbon ingress increases the carbon activity to more than one ( a c > 1), resulting in the formation of metastable M 3 C carbides in low-nickel alloys, or resulting in direct growth of graphite in high-nickel alloys, (d) graphite deposition occurs decreasing the carbon More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
... of these alloys. Some categories of corrosion covered are pitting, crevice, intergranular, stress-corrosion cracking, general, and high-temperature corrosion. stainless steels nickel alloys corrosion resistance alloying elements pitting corrosion crevice corrosion intergranular corrosion stress...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080003
EISBN: 978-1-62708-304-1
... to the specific high-temperature corrosive environment in the end application. This can lead to premature failures. For example, because of their good weldability, high nickel filler metals, such as filler metal alloy 82 (ERNiCr-3), are sometimes used for welding the alloys that are to be in service...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
... Abstract Nickel-base alloys are generally used in harsh environments that demand either corrosion resistance or high-temperature strength. This article first describes the general welding characteristics of nickel-base alloys. It then describes the weldability of solid-solution nickel-base...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170614
EISBN: 978-1-62708-297-6
... quantities include high-purity and commercial purity irons, phosphorus irons, low-carbon steels, silicon (electrical) steels, nickel-iron alloys, iron-cobalt alloys, and ferritic stainless steels. (Large quantities of soft magnetic ceramic materials, i.e., ferrites, are also produced...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
... in a wide variety of environments. Additionally, unique intermetallic phases can form between nickel and some of its alloying elements, enabling the formulation of alloys that can be heat treated to exhibit high strength even at high temperatures. They are often used because of their resistance to stress...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200298
EISBN: 978-1-62708-354-6
... Alloys The three alloys normally considered in this group are HA, HC, and HD although only the first of these is technically an Fe-Cr alloy. The other two grades contain 26 to 30% chromium and up to 7% nickel. These grades are mainly used in environments containing sulphur-bearing gases, where high...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030112
EISBN: 978-1-62708-282-2
..., and fabrication practices on tantalum and its alloys should avoid producing such surface contamination as well as gross contamination. Corrosion of Nickel and High-Nickel Alloy Weldments The corrosion resistance of weldments is related to the microstructural and microchemical changes resulting from thermal...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... types of commercial alloys are outlined in Chapter 5, “Modern Alloy Production,” in this book. Heat treatment of aluminum, cobalt, copper, magnesium, nickel-base superalloys, and titanium alloys is discussed in Chapter 14, “Nonferrous Heat Treatment.” 13.1 Light Metals (Al, Be, Mg, Ti) High...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080423
EISBN: 978-1-62708-304-1
..., along with their alloys, are readily attacked by molten aluminum. Extremely high corrosion rates of iron-, nickel-, and cobalt-base alloys in molten aluminum are illustrated by the laboratory test results shown in Table 16.1 ( Ref 11 ). Samples of carbon steel and iron-and nickel-base alloys were...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080201
EISBN: 978-1-62708-304-1
... shows a high-nickel alloy that suffered sulfidation attack at about 930 °C (1700 °F) in a furnace firing ceramic tiles. The cross section at the corroded area showed sulfides through the cross section of the component. The breakdown of a protective oxide scale (i.e., Cr 2 O 3 scale for most high...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
..., high temperatures, high stresses, and combinations of these factors. There are several reasons for these capabilities. Pure nickel is ductile and tough because it possesses a face-centered cubic (fcc) structure up to its melting point (1453 °C, or 2647 °F). Therefore, nickel and nickel alloys...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... Abstract Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000009
EISBN: 978-1-62708-313-3
... (1674 °F). In superalloys, both iron and cobalt are stabilized by the addition of nickel to retain an fcc crystal structure throughout the gas turbine engine (GTE) application temperature range. 2.1 Nickel-Iron-Base Alloys Nickel-iron-base superalloys are characterized by their high toughness...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080147
EISBN: 978-1-62708-304-1
... of tungsten. Molybdenum-containing nickel-base alloys also did not perform well. Oh et al. ( Ref 36 ) attributed this to the formation of oxychlorides of molybdenum and tungsten, which have very high vapor pressures. The partial pressures of WO 2 Cl 2 and MoO 2 Cl 2 in equilibrium with the oxides (WO 3...