Skip Nav Destination
Close Modal
Search Results for
high-modulus graphite fibers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 100 Search Results for
high-modulus graphite fibers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780295
EISBN: 978-1-62708-281-5
... graphite fibers in amorphous polymers. thermal stress physical aging amorphous polymers high-modulus graphite fibers ENGINEERING PLASTICS, as a general class of materials, are prone to the development of internal stresses that arise during processing or during service when parts are exposed...
Abstract
In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus graphite fibers in amorphous polymers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870031
EISBN: 978-1-62708-314-0
... contributes to its high strength. Fig. 2.13 Carbon fiber structure. Source: Ref 5 If a true graphite fiber is desired, the fiber is graphitized at temperatures between 3600 and 5500 °F (1980 and 3040 °C), which produces a more crystalline structure and a higher elastic modulus. The final...
Abstract
This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as physical and mechanical property data for commercially important high-strength fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860149
EISBN: 978-1-62708-338-6
... Table A1.1 Fiber designations Fiber designation Type Commercial source AS-4 High-strength carbon/graphite Hexcel T-400 Carbon/graphite Toray, SGL T-650 Carbon/graphite Toray IM-7 Intermediate-modulus carbon/graphite Toray M46J High-modulus carbon/graphite Toray OC...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860413
EISBN: 978-1-62708-348-5
... psi) Low Modulus E Glass 3450 500 72 10.5 S Glass 4825 700 85 12.4 High Modulus Kevlar 49 (polyaramid) 2760 400 130 19 Boron 2760 400 380 55 Graphite: Type I 1720–2410 250–350 310–520 45–75 Type II 2410 350 260 38 Type III 2070–2410...
Abstract
Composite systems for cryogenic applications are discussed in this chapter. This chapter emphasizes filamentary-reinforced composites because they are the most widely used composite materials. It begins with a discussion on the approach to designing and fabricating with low-pressure laminate composites. This is followed by a section providing an overview of the materials in modern cryogenic technology. Then, the chapter describes the effect of cryogenic temperatures on materials properties; it also introduces the various joining techniques developed for composite materials. The effects of radiation on the properties of the materials are covered as well as the processes involved in testing laminates at cryogenic temperatures. Finally, the chapter provides information available on concrete aggregate composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
... counterparts, and they can be engineered for improved strength, stiffness, thermal conductivity, abrasion resistance, creep resistance, or dimensional stability. However, due to their high cost, commercial applications for MMCs are sparse, especially for the extremely expensive continuous fiber-reinforced MMCs...
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
... nonferrous alloy, and the reinforcement consists of high-performance carbon, metallic, or ceramic additions. Reinforcements, either continuous or discontinuous, may constitute from 10 to 70 vol% of the composite. Continuous fiber or filament (f) reinforcements include graphite, silicon carbide (SiC), boron...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
..., due to the lower aspect ratio and more random orientation of the reinforcements. Fig. 8.1 Common forms of composites containing unidirectional high-strength/high-modulus fibers embedded in a softer matrix. (a) Straight, continuous fibers. (b) Discontinuous or chopped fibers Among...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780276
EISBN: 978-1-62708-281-5
... in more fiber cracking and pulverization, leading to deterioration in load-carrying capacity, while high speed accelerates the debonding of fibers/fillers. This results in easy peeling off or pulling out of the reinforcing phase. High-modulus fibers are more effective in wear reduction than the high...
Abstract
This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron microscope micrographs of abraded surfaces of composites against 80-grade SiC paper and under 14 N load, and worn surfaces of abraded polyether-imide composites and polyamide 66 unidirectional composites and 66 hybrid composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
..., with strengths ranging from 2 to 7 GPa (300 to 1000 ksi) and moduli ranging from 207 to 1000 GPa (30 to 145 × 10 6 psi). With this wide range of properties, carbon fiber is frequently classified as high strength, intermediate modulus, or high modulus. Both carbon and graphite fibers are produced as untwisted...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... applications where high-modulus carbon or graphite multifilaments could be used to produce structures with high stiffness, low weight, and little or no thermal expansion over large temperature swings. Unidirectional high-modulus graphite P100 Gr/6061 aluminum tubes exhibit an elastic modulus in the fiber...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... carbon and graphite fiber composites are somewhat restricted for usage in specialized applications. Comparative properties of high-strength and high-modulus composites Table 14.12 Comparative properties of high-strength and high-modulus composites Property AS-4/3501-6 carbon/epoxy GY-70/934...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... temperatures are acceptable for a single mission. (b) Orbital maneuvering (OMS) engines The ceramic tiles are made from very high-purity amorphous silica fibers ~1.2 to 4 μm in diameter and 0.32 cm (0.125 in.) long, which are felted from a slurry and pressed and sintered at ~1370 °C (2500 °F...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... (ksi) Up to 2500 (360) Up to 5000 (725) Up to 350 (50) Young’s modulus, GPa (10 6 psi) 15 to 400 (2 to 58) 150 to 450 (22 to 65) 0.001 to 10 (0.00015 to 1.45) High-temperature creep resistance Poor to medium Excellent … Thermal expansion Medium to high Low to medium Very high...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... 950 (30.6) (20.6) (13.5) (17.8) (a) Values are tensile strength at break since these materials do not yield. (b) Not applicable. (c) No break occurred. Material code: Delrin 100P, 500P, and 900P are unmodified acetals with high, medium, and low viscosities, respectively; Delrin...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... to bonded tab use. Furthermore, the use of a softer tab material is usually preferred when testing high-modulus materials (such as fiber-glass tabs on a graphite-reinforced specimen). The simplest way to avoid bonded tab problems is to not use them. Many laminates (mostly nonunidirectional) can...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860151
EISBN: 978-1-62708-338-6
...-glass. A magnesium aluminosilicate glass per unit cross-sectional area, within the gage length, of the specimen. The pulling stress specially designed to provide very high-ten- required to break a given specimen. sile-strength glass filaments. S-glass and S-2 glass fibers have the same glass composition...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860115
EISBN: 978-1-62708-338-6
... of choice were intermediate-modulus, high-strength polyacrylonitrile-based carbon fibers such as T800 and IM7, both 40 to 43 × 10 6 psi (276 to 294 GPa) modulus and 800 ksi (5516 MPa) tensile strength fibers available at $60/lb. Currently, the fibers of choice are M30SC or T1000GB. Where high performance...
Abstract
The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed by a comparison of the advantages of composites over metals for RMCs. A discussion on a typical design, analysis, and manufacturing operation follows. The chapter introduces the basic design approach and shows some sizing techniques along with example calculations. It discusses the processes involved in the testing of the composite pressure vessel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... is frequently classified as either (1) high strength, (2) intermediate modulus, or (3) high modulus. Both carbon and graphite fibers are produced as untwisted bundles called tows . Common tow sizes are 1k, 3k, 6k, 12k, and 24k, where k = 1000 fibers. Immediately after fabrication, carbon and graphite fibers...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860081
EISBN: 978-1-62708-338-6
.... 7.4 Young’s modulus for graphite/epoxy laminates. f v , fiber volume Void-Free Structures Figure 7.5 demonstrates that the void content of composites has a very pronounced and deleterious effect upon interlaminar shear strength. Figure 7.6 demonstrates the winding of a void-free...
Abstract
The technology of fabricating composite hardware and structures by filament winding has evolved empirically through the development and manufacturing of specific components. This chapter reviews areas of technology used in building composite parts and discusses the processes from which the current technology was derived. The discussion covers quality control requirements for composite fabrication technology and cleanliness standards in the workplace. It describes technology developed for specific components, including satellites struts, aircraft hydraulic cylinders, drill pipe, drive shafts, couplings, and cryogenic tubing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870179
EISBN: 978-1-62708-299-0
... 20 ). Delayed-time failures were reported at high stress intensities for boron/aluminum MMCs evaluated in air and seawater. It was suggested that the failures resulted from room-temperature creep. Corrosion Fatigue The seawater and air fatigue properties of graphite/6061 aluminum MMCs...
Abstract
This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite-aluminum composites and the use of protective coatings and design criteria for corrosion prevention.
1