Skip Nav Destination
Close Modal
Search Results for
high-fracture-toughness steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 514 Search Results for
high-fracture-toughness steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240371
EISBN: 978-1-62708-251-8
... structural steels, SAE/AISI alloy steels, high-fracture-toughness steels, maraging steels, austenitic manganese steels, high-strength low-alloy steels, dual-phase steels, and transformation-induced plasticity steels. alloying elements mechanical properties low-alloy structural steels SAE/AISI alloy...
Abstract
Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties compared to plain carbonsteels as a result of alloying additions. This chapter describes the beneficial effects of these alloying elements in steels. It discusses the mechanical properties, nominal compositions, advantages, and engineering applications of various classes of alloy steels. They are low-alloy structural steels, SAE/AISI alloy steels, high-fracture-toughness steels, maraging steels, austenitic manganese steels, high-strength low-alloy steels, dual-phase steels, and transformation-induced plasticity steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240221
EISBN: 978-1-62708-251-8
... materials is almost always inversely proportional to their yield strength, as shown in the data for steel alloys in Fig. 13.22 . The high-fracture-toughness steels normally have more ductile low-carbon martensite and retained metastable austenite as dominant phases in their microstructures, while steels...
Abstract
Fracture is the separation of a solid body into two or more pieces under the action of stress. Fracture can be classified into two broad categories: ductile fracture and brittle fracture. Beginning with a comparison of these two categories, this chapter discusses the nature and causes of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions to a brittle failure. The discussion then covers the Griffith theory of brittle fracture and the formulation of fracture mechanics. Procedures for determination of the plane-strain fracture toughness are subsequently covered. Finally, the chapter describes the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... of strength for high-strength structural alloys. Source: Ref 1 The fracture toughness of high-strength materials is almost always inversely proportional to their yield strength, as shown in the data for steel alloys in Fig. 2 . The high-fracture-toughness steels normally have more ductile low-carbon...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900325
EISBN: 978-1-62708-358-4
... processing and heat treatment problems. In addition to fracture problems, distortion is discussed. Fracture and Toughness of Tool Steels: General Considerations Tool steels must have very high strength, hardness, and wear resistance. These properties are inconsistent with high toughness or fracture...
Abstract
This chapter presents an overview of some of the major causes of tool and die failures. The chapter describes fracture and fracture toughness of tool steels, and the influence of factors such as steel quality and primary processing, mechanical design, heat treatment, grinding and finishing, and distortion and dimensional change.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410081
EISBN: 978-1-62708-482-6
... becomes smaller, resulting in decreased toughness. Figure 4.27 shows the variation of fracture toughness with yield strength for different grades of steel. The inverse relationship between fracture toughness and yield strength is obvious. Steels toward the bottom right have high strength and low...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700071
EISBN: 978-1-62708-279-2
... to be tough, both strength and ductility must be high. The larger the area under the stress-strain curve, the more the energy that can be absorbed before fracture. Figure 4.26 compares the dynamic energy absorption of different grades of automotive steels tested at a high strain rate of 10 3 s −1...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... steel E. Fracture occurs in the brittle steel with little or no elongation or plastic strain. In contrast, the ductile steel sustains a lower load with high strain before breaking. Fig. 1 The area under a stress-strain curve taken to specimen fracture gives a rough estimate of the toughness...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540423
EISBN: 978-1-62708-309-6
... are compiled in this appendix. Room-temperature ultimate tensile strength and plane-strain fracture toughness values for several commonly used high-strength steels are shown in Fig. A10.1 and A10.2 . Plane-strain fracture toughness versus strength for 4345, 4340, and the precipitation-hardening stainless...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... microstructure to resist fracture. Many factors in addition to microstructure affect whether a steel will have high or low toughness, and these factors are incorporated into the many tests used to evaluate fracture behavior. Charpy V-notch (CVN) testing evaluates the effect of high strain rate loading...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900125
EISBN: 978-1-62708-358-4
..., are not continuous in the tempering temperature range used for the water-hardening steels. In high-strength, low-toughness, high-carbon martensitic steels tempered at low temperatures, very small surface flaws initiate tensile fracture; as a result, tensile testing is not reliable. Mechanical property changes must...
Abstract
The water-hardening steels are either essentially plain carbon steels or very low-alloy carbon steels. As a result, the water-hardening tool steels are the least expensive of tool steels and require strict control of processing and heat treatment to achieve good properties and performance. This chapter provides an overview of general processing and performance considerations of water-hardening tool steels. It describes the microstructural characteristics and hardenability of water-hardening tool steels. The chapter discusses the processes involved in the hardening and tempering of water-hardening tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860269
EISBN: 978-1-62708-348-5
... Annealed f.c.c. alloys have low strength and high fracture toughness. Included in this group are copper alloys, aluminum alloys, austenitic stainless steels, and nickel-based superalloys. Ductile tearing is typical, even in thick sections. Fracture toughness values for these alloys usually increase between...
Abstract
This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610101
EISBN: 978-1-62708-303-4
... for high-strength metals, such as high-strength steels, titanium, and aluminum alloys. EPFM is used when the crack tip is not sharp and there is some crack tip plasticity (blunting). EPFM is used in the design of materials, such as lower-strength, higher-toughness steels. There are numerous methods...
Abstract
Fracture mechanics is the science of predicting the load-carrying capabilities of cracked structures based on a mathematical description of the stress field surrounding the crack. The fundamental ideas stem from the work of Griffith, who demonstrated that the strain energy released upon crack extension is the driving force for fracture in a cracked material under load. This chapter provides a summary of Griffith’s work and the subsequent development of linear elastic and elastic-plastic fracture mechanics. It includes detailed illustrations and examples, familiarizing readers with the steps involved in determining strain energy release rates, stress intensity factors, J-integrals, R-curves, and crack tip opening displacement parameters. It also covers fracture toughness testing methods and the effect of measurement variables.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930113
EISBN: 978-1-62708-359-1
... Charpy and fracture mechanics toughness tests show a transition from ductile to brittle behavior with decreasing temperature. Figure 21 shows Charpy energy transition curves for a variety of steels and for a number of other materials. At high temperatures, in the upper-shelf regime, a ferritic material...
Abstract
This article discusses the various options for controlling fatigue and fracture in welded steel structures, the factors that influence them the most, and some of the leading codes and standards for designing against these failure mechanisms. The two most widely used approaches discussed for fatigue control in welded joints are the S-N curve approach and the fracture mechanics assessment methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170234
EISBN: 978-1-62708-297-6
... maraging steels typically have high levels of nickel, cobalt, and molybdenum with little carbon content and how that affects their dimensional stability, fracture toughness, weldability, and resistance to stress-corrosion cracking. maraging steel Composition Fracture toughness Introduction...
Abstract
This article discusses the effects of alloying on the properties and behaviors of maraging steels. It describes how maraging steels differ from conventional steels in that they are strengthened, not by carbon, but by the precipitation of intermetallic compounds. It explains how maraging steels typically have high levels of nickel, cobalt, and molybdenum with little carbon content and how that affects their dimensional stability, fracture toughness, weldability, and resistance to stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
... the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments. carbon steel corrosion fatigue strength fracture toughness heat-affected zone low-alloy steel microstructure residual stress welding weldments THE PROPERTIES...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... selection of preheat and welding parameters: whereas higher heat inputs and preheats can reduce weld cracking in some ferritic stainless steels, grain growth in the weld HAZ can occur. Excessive grain growth can produce losses in fracture toughness, ductility, and corrosion resistance. Under some...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490021
EISBN: 978-1-62708-340-9
... and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well...
Abstract
The toughness of a material is its ability to absorb energy in the form of plastic deformation without fracturing. It is thus a measure of both strength and ductility. This chapter describes the fracture and toughness characteristics of metals and their effect on component lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well as grain size, inclusion content, and impurities. It also presents the theory and use of elastic-plastic fracture mechanics and discusses the causes, effects, and control of temper embrittlement in various types of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860371
EISBN: 978-1-62708-348-5
... the toughness at room temperature ( LNG Materials and Fluids , 1978 ). The ratio of toughness to yield strength [ K Ic ( J ) σ ys ] is sufficiently high to ensure gross ductile deformation prior to fracture. Figure 11.7 Fracture toughness of two austenitic stainless steels —AISI types 310 and 316...
Abstract
This chapter discusses the structural alloys being used for cryogenic applications in commercially significant quantities. It emphasizes the practical considerations involved in the material selection process and provides the information necessary to make preliminary selections of alloys most suitable for the intended cryogenic application. The chapter provides general information on a class or group of alloys, their representative mechanical and physical properties, and their fabrication characteristics. The materials covered are austenitic stainless steels, nickel steels, aluminum alloys, and other metals and alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700151
EISBN: 978-1-62708-279-2
... that the ductility of stainless steels far exceeds that of mild and DP steels. Their strength is higher than that of mild steel but comparable to that of DP steels. Toughness is the resistance of a metal to fracture and is related to the total area under the stress-strain curve from yielding up to fracture...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410163
EISBN: 978-1-62708-482-6
... steel for a given application. Austenitic stainless steels have high ductility, low yield stress, and relatively high ultimate tensile strength when compared to typical carbon steels. These steels are also ductile and tough, even at very low subzero temperatures, and include: Type 405 steel...
Abstract
Austenitic stainless steels are iron-base alloys containing more than 50% Fe, 15 to 26% Cr, and less than 45% Ni. This chapter provides a discussion on the types, compositions, microstructures, processing, deformation mechanism, mechanical properties, formability, and special attributes of austenitic stainless steels.
1