Skip Nav Destination
Close Modal
Search Results for
high-carbon tool steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 675
Search Results for high-carbon tool steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1998
Fig. 17-20 Grinding damage on a high-carbon, high-chromium tool steel slitter knife that spalled in service
More
Image
Published: 01 December 1995
Image
Published: 01 December 1995
Image
Published: 01 January 1998
Fig. 8-15 Length changes on tempering a high-carbon L2 tool steel. Tempering time is considered to begin 1.5 h after quenching. Source: Ref 13
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900203
EISBN: 978-1-62708-358-4
... Abstract The high-carbon, high-chromium tool steels, designated as group D steels in the AISI classification system, are the most highly alloyed cold-work steels. This chapter describes the microstructures and hardenability of high-carbon, high-chromium tool steels and discusses the processes...
Abstract
The high-carbon, high-chromium tool steels, designated as group D steels in the AISI classification system, are the most highly alloyed cold-work steels. This chapter describes the microstructures and hardenability of high-carbon, high-chromium tool steels and discusses the processes involved in the hardening and tempering of tool steels. It also covers the selection criteria and applications of high-carbon, high-chromium tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
... include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels. air-hardening tool steel annealing austenitizing high-carbon tool steel high...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410621
EISBN: 978-1-62708-265-5
... content and somewhat higher alloy content than the W steels. The medium carbon content improves toughness and makes the type S steels good for applications with shock and impact loading. Tool steels for cold work include three classes of steels: AISI types O, A, and D. All classes have high carbon...
Abstract
Tools steels are defined by their wear resistance, hardness, and durability which, in large part, is achieve by the presence of carbide-forming alloys such as chromium, molybdenum, tungsten, and vanadium. This chapter describes the alloying principles employed in various tool steels, including high-speed, water-hardening, shock-resistant, and hot and cold work tool steels. It discusses the influence of alloy design on the evolution of microstructure and properties during solidification, heat treating, and hardening operations. It also describes critical phase transformations and the effects of partitioning, precipitation, segregation, and retained austenite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
... overlaps the technology of carbon and low-alloy carbon steels, produced in large tonnages, which may be hardened by quench and tempering heat treatments. Although this association between tool steels and other hardenable steels is true, most texts on tool steels exclude treatment of the high-tonnage bar...
Abstract
Tool steels are the ferrous alloys used to manufacture tools, dies, and molds that shape, form, and cut other materials, including steels, nonferrous metals, and plastics. This chapter explores the considerations that make tool steels a very special class of steels, the long historical evolution of iron and steel manufacture, including steels for tools, and the development of tool steels as they emerged from the general class of iron and steel products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900007
EISBN: 978-1-62708-358-4
... Identifying symbol Water-hardening tool steels W Shock-resisting tool steels S Oil-hardening cold-work tool steels O Air-hardening, medium-alloy cold-work tool steels A High-carbon, high-chromium cold-work tool steels D Mold steels P Hot-work tool steels, chromium, tungsten...
Abstract
The several specific grades or compositions of tool steels have evolved over time and have been organized into useful groupings. This chapter presents the AISI classification system for tool steels, which categorizes tool steels by their alloying, applications, or heat treatment, and briefly describes the characteristics of each major group. It discusses selection criteria for tool steels, along with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170210
EISBN: 978-1-62708-297-6
... are added to M- and T-type steels to impart certain properties. These elements and their effects are discussed in the following paragraphs. Carbon Carbon is by far the most important of the elements and is very closely controlled. The carbon content of any one high-speed tool steel is usually fixed...
Abstract
This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels. It explains how the properties of these steels are determined by alloying elements, such as tungsten, molybdenum, vanadium, manganese, and chromium, and the presence of alloy carbides. It describes the types of carbides that form and how they contribute to wear resistance, toughness, high-temperature strength, and other properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900125
EISBN: 978-1-62708-358-4
... Processing and Performance Considerations The carbon tool steels are used because high hardness can be achieved if quenching is rapid enough to produce fully martensitic microstructures, at least at the surface of hardened tools. Fig. 7-1 shows that the hardness of as-quenched martensitic steels...
Abstract
The water-hardening steels are either essentially plain carbon steels or very low-alloy carbon steels. As a result, the water-hardening tool steels are the least expensive of tool steels and require strict control of processing and heat treatment to achieve good properties and performance. This chapter provides an overview of general processing and performance considerations of water-hardening tool steels. It describes the microstructural characteristics and hardenability of water-hardening tool steels. The chapter discusses the processes involved in the hardening and tempering of water-hardening tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
... a water quench no thicker than about 2 mm, whereas D2 tool steel will air harden inches thick to 60 HRC. So, hardenability is an important consideration in evaluating steels for tribological applications—high hardenability is usually desired. Carbon steels have poor hardenability. Researchers...
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... required to produce martensite. Many tool steels have molybdenum, chromium, and manganese as alloying additions to improve hardenability. A high carbon content is required to obtain tempered martensite with a high hardness. In addition, wear resistance is enhanced by the presence of hard second-phase...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130311
EISBN: 978-1-62708-284-6
...)</xref> Table 1 AISI classification for tool steels (Ref 1) Group Symbol Water-hardened tool steels W Shock-resistant tool steels S Oil-hardening tool steels O Air-hardening tool steels A High-carbon and high-chromium die steels D Tool steel for application in plastic molds P...
Abstract
This chapter focuses on the failure aspects of tool steels. The discussion covers the classification, chemical composition, main characteristics, and several failures of tool steels and their relation to heat treatment. The tool steels covered are hot work, cold work, plastic mold, and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250073
EISBN: 978-1-62708-287-7
... of alloys for tool steels. The chapter provides information on the research investigations into the metallurgy of high-speed tool steels at MIT, Union Carbide, and Carbon Laboratories. The major research effort involved in substituting molybdenum for tungsten in high-speed tool steels is discussed...
Abstract
This chapter provides a detailed account of the development of tool steel technology. It begins with a record of steelmaking in ancient and medieval times. The crucible melting process involved in making steel is then discussed. This is followed by a description of the increasing use of alloys for tool steels. The chapter provides information on the research investigations into the metallurgy of high-speed tool steels at MIT, Union Carbide, and Carbon Laboratories. The major research effort involved in substituting molybdenum for tungsten in high-speed tool steels is discussed. The chapter also describes the role of the Cleveland Twist Drill Company as the first adopter of molybdenum high-speed steel. It ends with a discussion on the advanced work on high-speed steels by Swedish researchers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900193
EISBN: 978-1-62708-358-4
... Abstract The air-hardening cold-work tool steels, designated as group A steels in the AISI classification system, achieve their processing and performance characteristics with combinations of high carbon and moderately high alloy content. This chapter describes the microstructural features...
Abstract
The air-hardening cold-work tool steels, designated as group A steels in the AISI classification system, achieve their processing and performance characteristics with combinations of high carbon and moderately high alloy content. This chapter describes the microstructural features and hardenability of air-hardening cold-work tool steels and discusses the processes involved in the hardening and tempering of tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900045
EISBN: 978-1-62708-358-4
... steels. The high carbon and alloy contents of tool steels are used to produce very high strength and hardness by the formation of crystalline phases such as martensite and various carbides. The phases are arranged into microstructures by solidification or powder processing, hot rolling, and heat...
Abstract
This chapter describes the various phases that form in tool steels, starting from the base of the Fe-C system to the effects of the major alloying elements. The emphasis is on the phases themselves: their chemical compositions, crystal structures, and properties. The chapter also provides general considerations of phases and phase diagrams and the determination of equilibrium phase diagrams. It describes the formation of martensite, characteristics of alloy carbides, and the design of tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140157
EISBN: 978-1-62708-264-8
... hardness but poor toughness. The high-carbon T15 steel is included in Tables 14.1 and 14.2 to provide an example of a tool steel designed for maximum wear resistance and hot hardness at the sacrifice of toughness. The Carbides in Tool Steels It should be clear from the previous discussion...
Abstract
Tool steels are specialty steels, produced in relatively low volumes, optimized for applications requiring precise combinations of wear resistance, toughness, and hot hardness. This chapter describes the AISI classification system by which tool steels are defined. It discusses primary types, including high-speed and shock-resisting steels, and their associated subtype groups (W, L, S, O, A, D, H, M, and T series). It also discusses the types of carbides found in tool steels and their influence on mechanical properties. The chapter concludes with a discussion on heat treatment effects unique to tool steels, including two-phase effects, austenite stabilization, and the conditioning of retained austenite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... of the first technical papers regarding the nitriding of high-speed tool steels were published in the 1930s, and pack carburizing has long been used to maintain surface carbon contents of high-carbon tool steels during heat treatment ( Ref 1 ). Today many additional surface modification technologies...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060273
EISBN: 978-1-62708-261-7
... in the following paragraphs. Carbon Carbon is by far the most important of the alloying elements and is very tightly controlled. The carbon content of any single high-speed or tool steel is usually fixed within narrow limits, but variations within these limits can cause important changes in the resulting...
Abstract
Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear.
1