Skip Nav Destination
Close Modal
Search Results for
high-carbon steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1066 Search Results for
high-carbon steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 10.76 Forge weld region of a steel hoe blade. High carbon steel (to the right) welded to low carbon steel (to the left). Region not quenched. Microstructure is pearlite in the right side and ferrite and pearlite in the left side. Etchant: nital.
More
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 10.77 Forge weld region of a steel hoe blade. High carbon steel (to the right) welded to low carbon steel (to the left). Quenched region. Martensite and elongated nonmetallic inclusions (to the right) and ferrite, acicular ferrite and martensite (to the left). Etchant: nital.
More
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 10.55 High carbon steel quenched after overheating in the austenitic single phase field. Very coarse martensite. Etchant: nital.
More
Image
Published: 01 August 1999
Fig. 8.1 Austenitization of a high-carbon steel. Original structure: ferrite and spheroidized cementite. The dark-etching areas were austenitic prior to quenching. The mid-tone areas are cementite. The lightest areas are ferrite. (a) Unheated. Picral. 1500×. (b) Heated at 745 °C for 5 s
More
Image
Published: 31 December 2020
Image
Published: 01 October 2011
Fig. 8.3 Spark patterns used to identify low-, medium-, and high-carbon steels. (a) Sparks from 1015 steel (0.15% C). (b) Sparks from 1045 steel (0.45% C). (c) Sparks from 1095 steel (1.0% C)
More
Image
Published: 01 January 1998
Fig. 5-29 Multiplying factors for alloying elements in high-carbon steels quenched from 830 °C (1525 °F). See text for discussion of Si*. Source: Ref 50
More
Image
Published: 01 January 1998
Fig. 5-30 Multiplying factors for alloying elements in high-carbon steels quenched from 927 °C (1700 °F). See text for discussion of Si*. Source: Ref 50
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410315
EISBN: 978-1-62708-265-5
... is a TEM micrograph showing the pearlitic microstructure in a high-carbon steel rail. The interlamellar spacing between the ferrite and cementite phases is quite fine; regions where the lamellae are parallel or almost parallel are referred to as colonies. This remarkable composite structure of ductile...
Abstract
This chapter describes the mechanical properties of fully pearlitic microstructures and their suitability for wire and rail applications. It begins by describing the ever-increasing demands placed on rail steels and the manufacturing methods that have been developed in response. It then explains how wire drawing, patenting, and the Stelmor process affect microstructure, and describes various fracture mechanisms and how they appear on steel wire fracture surfaces. The chapter concludes by discussing the effects of torsional deformation, delamination, galvanizing, and aging on patented and drawn wires.
Image
Published: 01 January 1998
Fig. 3-4 Macroetch quality of high-carbon sulfurized M2-type high-speed steel produced conventionally and by electroflux remelting. (a) From static cast 350 mm (14 in.) square ingot. Disks hardened and tempered. (b) and (c) From electroflux remelted 400 mm (16 in.) diam ingot. Polished
More
Image
Published: 01 January 1998
Fig. 17-20 Grinding damage on a high-carbon, high-chromium tool steel slitter knife that spalled in service
More
Image
Published: 01 August 1999
Fig. 5.12 (Part 1) Higher-strength grade of HSLA hot-rolled steel strip. High carbon, high manganese, microalloys: niobium and vanadium. 0.085C-0.19Si-1.42Mn-0.003M0-0.045Nb-0.003Ti-0.038V-0.001S-0.015P (wt%). 220 HV. (a) Quarter-thickness region. Nital. 100×. (b) Quarter-thickness region
More
Image
Published: 01 December 1995
Image
Published: 01 December 1995
Image
Published: 01 November 2007
Fig. 3.7 Oxidation of carbon steel and high-strength low-alloy (HSLA) steel in air. Source: Ref 13 , reproduced from Ref 14
More
Image
Published: 01 December 2015
Fig. 3 Oxidation of carbon steel and high-strength low-alloy (HSLA) steel in air. Source: Ref 2
More
Image
Published: 01 December 1984
Figure 3-42 Microstructure of dual-phase low-carbon sheet steel with low (top) and high (bottom) martensite contents etched with Le Pera’s reagent (left) and 20% Na 2 S 2 O 5 (right), 500×. (From Marder and Benscoter, Ref. 93, courtesy of Elsevier Science Publishing Co., Inc.)
More
Image
in Introduction to Steels and Cast Irons
> Metallographer’s Guide<subtitle>Practices and Procedures for Irons and Steels</subtitle>
Published: 01 March 2002
Fig. 1.2(c) Micrograph of high-carbon AISI/SAE 1095 steel showing a matrix of pearlite and some grain-boundary cementite. Etched in 4% picral. 500×
More
Image
Published: 01 December 2004
Fig. 13 Stress-time diagrams from high strain rate tensile testing of carbon steel (0.45% C) between room temperature and 600 °C (1100 °F)
More
Image
Published: 01 January 1998
Fig. 8-15 Length changes on tempering a high-carbon L2 tool steel. Tempering time is considered to begin 1.5 h after quenching. Source: Ref 13
More
1