Skip Nav Destination
Close Modal
By
T. Klassen, F. Gärtner, H. Assadi
By
H. Assadi, F. Gärtner, T. Klassen
Search Results for
high strain rate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 715
Search Results for high strain rate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
High Strain Rate Tensile Testing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060251
EISBN: 978-1-62708-355-3
... Abstract High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes involved...
Abstract
High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes involved in determining strain rate effects in tension by conventional tensile tests and covers expanding ring tests, flat plate impact tests, split-Hopkinson pressure bar tests, and rotating wheel tests.
Image
Published: 01 July 2009
Fig. 17.8 Compressive stress-strain curves obtained at a high strain rate of 10 3 s –1 at 20 and 300 °C for vacuum hot-pressed S-200F beryllium. Source: Ansart and Naulin 1991
More
Image
Influence of joining method on stress-time curves for high strain rate tens...
Available to PurchasePublished: 01 December 2004
Fig. 12 Influence of joining method on stress-time curves for high strain rate tension test specimens
More
Image
Stress-time diagrams from high strain rate tensile testing of carbon steel ...
Available to PurchasePublished: 01 December 2004
Fig. 13 Stress-time diagrams from high strain rate tensile testing of carbon steel (0.45% C) between room temperature and 600 °C (1100 °F)
More
Image
Viscosity versus shear strain rate for high-density polyethylene at tempera...
Available to PurchasePublished: 30 April 2020
Fig. 3.22 Viscosity versus shear strain rate for high-density polyethylene at temperatures of 170, 190, and 210 °C (340, 375, and 410 °F). Shear thinning is evident by the reduction in viscosity as the strain rate increases, and thermal softening is evident by the temperature effect.
More
Book Chapter
Cracking of the Skin in the Main Rotor Blade in a Helicopter
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270154
EISBN: 978-1-62708-301-0
..., the outer skin was subjected to severe overload. The final overload fracture of one outer skin took place by the reverse slant mode, indicative of high strain rate fracture. Although full slant fracture may develop in thin sheets because through thickness stresses are relaxed by plastic deformation...
Abstract
The aluminum alloy skin on the main rotor blade of a helicopter tore off in flight, and an investigation was subsequently conducted to find the cause. Visual examination and SEM fractography revealed that a fatigue crack originated on the underside of a rivet hole at the trailing edge of the blade. The crack then propagated through the outer skin toward the leading edge of the blade. Once the fatigue crack reached critical length, the sheet metal fractured catastrophically, tearing away from the blade.
Image
Postulated temperature dependences of ductile and brittle fracture stresses...
Available to PurchasePublished: 01 June 1983
Figure 7.17 Postulated temperature dependences of ductile and brittle fracture stresses showing effects of high strain rate and stress concentration.
More
Book Chapter
Hot Tensile Testing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060209
EISBN: 978-1-62708-355-3
... of deformation heating may also be an important consideration, especially at high strain rates, because it can significantly raise the specimen temperature. Gleeble Testing Equipment The Gleeble system ( Ref 5 ) has been used since the 1950s to investigate the hot tensile behavior of materials and thus...
Abstract
This chapter focuses on short-term tensile testing at high temperatures. It emphasizes one of the most important reasons for conducting hot tensile tests: the determination of the hot working characteristics of metallic materials. Two types of hot tensile tests are discussed in this chapter, namely, the Gleeble test and the conventional isothermal hot-tensile test. The discussion covers equipment used and testing procedures for the Gleeble test along with information on hot ductility and strength data from this test. The chapter describes the stress-strain curves, material coefficients, and flow behavior determined in the isothermal hot tensile test. It also describes three often-overlapping stages of cavitation during tensile deformation, namely, cavity nucleation, growth of individual cavities, and cavity coalescence.
Book Chapter
Deformation, Strengthening, and Fracture of Ferritic Microstructures
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410213
EISBN: 978-1-62708-265-5
... transition in steels is most commonly established by Charpy V-notch (CVN) testing, in which the energy absorbed during fracture of notched specimens subjected to high-strain-rate loading is measured at various test temperatures. Figure 11.5 shows a schematic set of CVN curves, one representing fracture...
Abstract
This chapter discusses the stress-strain response of ferritic microstructures and its influence on tensile deformation, strain hardening, and ductile fracture of carbon steels. It describes the ductile-to-brittle transition that occurs in bcc ferrite, the effects of aging and grain size on strength and toughness, continuous and discontinuous yielding behaviors, and dispersion and solid-solution strengthening processes.
Book Chapter
Partitioning of Hysteresis Loops and Life Relations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060083
EISBN: 978-1-62708-343-0
...) . If we assume the high-strain-rate half-cycle DEA is sufficiently high that only plasticity occurs, and that the reverse straining is slow enough so that some creep, as well as plasticity, will occur, we need only partition the tensile-going inelastic strain BE . To do so, strain cycling...
Abstract
This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic strain-range components. The methods covered include rapid cycling between peak stress extremes, half-cycle rapid loading and unloading, and variations of the incremental step-stress approach. The methods are then compared based on their ability to predict creep-fatigue life. The chapter goes on from there to describe how fatigue life can be estimated from ductility measurements when cyclic data are unavailable or are likely to change. It also explains how cyclic life is influenced by the time-dependent nature of creep-plasticity and the physical and metallurgical effects of environmental exposure.
Book Chapter
Twinning-Induced Plasticity Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410147
EISBN: 978-1-62708-482-6
... glide, the number of deformation-induced twins continues to increase with strain, thus reducing the effective glide distance of dislocations. Figure 9.5 shows how deformation twins reduce the free mean path for dislocation glide, causing the high strain-hardening rate observed in TWIP steels. Fig...
Abstract
This chapter presents an overview on the twins and stacking faults. It then provides an overview of the compositions, microstructures, thermodynamics, processing, deformation mechanism, mechanical properties, formability, and special attributes of twinning-induced plasticity steels.
Book Chapter
Tensile Testing Equipment and Strain Sensors
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060065
EISBN: 978-1-62708-355-3
... , which yields a strain of 0.5 in 500 s. Conventional equipment and techniques generally can be extended to strain rates as high as 0.1 s –1 without difficulty. Tests at higher strain rates necessitate additional considerations of machine stiffness and strain measurement techniques. In terms of machine...
Abstract
This chapter reviews the current technology and examines force application systems, force measurement, strain measurement, important instrument considerations, gripping of test specimens, test diagnostics, and the use of computers for gathering and reducing data. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment. The chapter discusses various types of testing machines and their operations. Emphasis is placed on strain-sensing equipment. The chapter briefly describes load condition factors, such as strain rate, machine rigidity, and various testing modes by load control, speed control, strain control, and strain-rate control. It provides a description of environmental chambers for testing and discusses the processes involved in the force verification of universal testing machines. Specimen geometries and standard tensile tests are also described.
Book Chapter
Twinning-Induced Plasticity Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700135
EISBN: 978-1-62708-279-2
... twins involves the creation of new crystal orientations that progressively reduce the effective mean free path of dislocations and increase the flow stress, resulting in a high strain-hardening rate for TWIP steel. The resultant twin boundaries act like grain boundaries in strengthening the steel...
Abstract
This chapter briefly discusses the characteristics of mechanical twins and stacking faults in close-packed planes. It provides an overview of the composition, microstructures, thermodynamics, processing, deformation mechanism, mechanical properties, formability, and special attributes of twinning-induced plasticity steels.
Book Chapter
Deformation and Recrystallization of Titanium and Its Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480095
EISBN: 978-1-62708-318-8
... through the beta transus temperature causes extreme grain growth, which is undesirable as it degrades the mechanical properties. Alpha-beta titanium alloys display superplastic behavior ( Ref 5.4 ); that is, they exhibit both high elongation and high strain-rate sensitivity at elevated temperatures...
Abstract
Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning, the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes.
Book Chapter
Explosive Sabotage
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270045
EISBN: 978-1-62708-301-0
... place at very high strain rates, of the order of 10 6 s −1 . Two important microstructural changes, namely, adiabatic shear and twinning, can take place under such conditions. Adiabatic Shear When the deformation is highly localized, and the heat of plastic deformation cannot be dissipated fast...
Abstract
This chapter describes the characteristic damage of a mid-air explosion and how it appears in metal debris recovered from crash sites of downed aircraft. It explains that explosive forces produce telltale signs such as petaling, curling, spalling, spikes, reverse slant fractures, and metal deposits. Explosive forces can also cause ductile metals such as aluminum to disintegrate into tiny pieces and are associated with chemicals that leave residues along with numerous craters on metal surfaces. The chapter provides examples of the different types of damage as revealed in the investigation of two in-flight bombings.
Book Chapter
Process Science of Cold Spray
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460017
EISBN: 978-1-62708-285-3
.... The interdisciplinary science behind cold spraying includes topics from fluid dynamics, high-strain-rate mechanics, materials science, and engineering. In this chapter, materials science is primarily considered. This chapter reviews the current understanding of kinetic spraying for different materials, covering widely...
Abstract
This chapter reviews the current understanding of high-pressure cold spraying for different materials, covering widely accepted general mechanisms for particle deposition and the processes and parameters involved. It begins by reviewing the mechanisms of bonding. An overview of the optimization of the critical process parameters for improving coating qualities is then provided. This is followed by a separate section dealing with bonding between different materials and addressing influences on adhesion to the substrate as well as the cohesion between dissimilar coating constituents. The knowledge of the basic science and mechanisms finally allows for discussion on the requirements for suitable cold spray equipment and of the parameter sets needed for successful coating deposition.
Book Chapter
Tensile Testing of Metals and Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... of anelastic deformation. The sudden application of the tensile load may elastically strain the iron lattice at such a high rate that carbon migration to favored sites cannot occur as the load is applied. However, if the material remains under load, the time-dependent migration to favored sites...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040257
EISBN: 978-1-62708-300-3
... , and Greenwood et al., 1978 ]. The dependence of the flow stress on temperature is minimal at very low (creep) as well as high (conventional hot forging) strain rates. At intermediate strain rates, however, the flow stress dependence on ε ¯ is often large, and it is in this region...
Abstract
This chapter discusses the processes of isothermal and hot-die forging and their use in producing aerospace components. It explains how isothermal forging was developed to provide a near-net shape component geometry and well-controlled microstructures and properties with accurate control of the working temperature and strain rate. It describes the materials typically used as well as equipment and tooling, die heating procedures, part separation techniques, and postforging heat treatment.
Book Chapter
Modeling and Simulation of Cold Spray
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460067
EISBN: 978-1-62708-285-3
... that describe viscoplastic response of materials at high strain rate is the Johnson-Cook plasticity model ( Ref 3.9 ): (Eq 3.1) σ = ( A + B ε n ) ( 1 + C ln ε ˙ * ) ( 1 − T * m ) where σ is the flow stress; ε is the equivalent plastic strain; ε...
Abstract
The modeling and simulation activities in the field of high-pressure cold spray can be divided into two main parts: solid mechanics and fluid dynamics. This chapter focuses on these parts of modeling work in cold spray research. The discussion covers the objective, principal concepts, methods, and outcome of modeling and simulation of particle impact and of in-flight history of particles in cold spraying. The concept of integration of particle impact and fluid flow modeling to optimize cold spray deposition for a given material is also explained.
Book Chapter
Deformation Processing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... sensitivity. A high value of m means that any incipient neck that develops becomes stronger and spreads to neighboring material, allowing more deformation in tension. In some very finegrained metals, the value of m may reach 0.4 to 0.5 but only at very low strain rates and within a limited temperature...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
1