Skip Nav Destination
Close Modal
Search Results for
hexagonal close-packed
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 227 Search Results for
hexagonal close-packed
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Image
Published: 01 August 2013
Image
Published: 01 March 2006
Image
Published: 01 June 2008
Image
Published: 01 December 1984
Figure 3-8 Patterns developed on face-centered cubic and hexagonal close-packed single crystals by heat tinting, which demonstrates the sensitivity of oxidation to crystal orientation. (From R. J. Gray et al., Ref. 26, courtesy of Plenum Press.)
More
Image
Published: 31 December 2020
Image
Published: 31 December 2020
Fig. 16 Dominant slip systems in (a) hexagonal close-packed (hcp), (b) face-centered cubic (fcc), and (c) body-centered cubic (bcc) lattices. (d) Corners of the four slip (close-packed) planes in an fcc structure. (e) Corners of the six slip planes with the highest atomic density in a bcc
More
Image
Published: 01 October 2011
Image
Published: 01 October 2011
Fig. 2.23 Dominant slip systems in (a) hexagonal close-packed (hcp), (b) face-centered cubic (fcc), and (c) body-centered cubic (bcc) lattices. (d) Corners of the four slip (close-packed) planes in an fcc structure. (e) Corners of the six slip planes with the highest atomic density in a bcc
More
Image
Published: 01 March 2012
Image
Published: 01 January 2015
Fig. 3.4 Crystal structure of titanium. Titanium is allotropic: hexagonal close-packed (alpha) up to 885 °C (1625 °F) and body-centered cubic (beta) from 885 to 1670 °C (1625 to 3038 °F).
More
Image
Published: 01 June 2008
Image
Published: 01 March 2012
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240625
EISBN: 978-1-62708-251-8
... Abstract This appendix explains how to calculate atomic packing factors, lattice parameters, and coordination numbers for cubic crystal structures, including simple, body-centered, and face-centered cubic systems. It also addresses hexagonal close-packed systems. atomic packing factors...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240003
EISBN: 978-1-62708-251-8
... structure, providing information on space lattices and crystal systems, hexagonal close-packed systems, and face-centered and body-centered cubic systems. The chapter then covers slip systems and closes with a brief section on allotropic transformations that occur at a constant temperature during either...
Abstract
Bonding in solids may be classified as either primary or secondary bonding. Methods of primary bonding include the metallic, ionic, and covalent bonds. This chapter discusses and provides a comparison of the properties of these bonds. This is followed by a discussion on crystalline structure, providing information on space lattices and crystal systems, hexagonal close-packed systems, and face-centered and body-centered cubic systems. The chapter then covers slip systems and closes with a brief section on allotropic transformations that occur at a constant temperature during either heating or cooling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240221
EISBN: 978-1-62708-251-8
... of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions...
Abstract
Fracture is the separation of a solid body into two or more pieces under the action of stress. Fracture can be classified into two broad categories: ductile fracture and brittle fracture. Beginning with a comparison of these two categories, this chapter discusses the nature and causes of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions to a brittle failure. The discussion then covers the Griffith theory of brittle fracture and the formulation of fracture mechanics. Procedures for determination of the plane-strain fracture toughness are subsequently covered. Finally, the chapter describes the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730001
EISBN: 978-1-62708-283-9
... and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium...
Abstract
This chapter discusses the foundational principles of materials science. It begins with a review of the periodic table and the fundamental particles, including atoms, ions, and molecules, that constitute matter. It also reviews the types of bonds that form between atoms and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium chloride and includes a list of structurally similar compounds.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
... diagrams face-centered cubic grain boundaries hexagonal close-packed line defects planar defects point defects solid solution solubility limit volume defects THE BUILDING BLOCK of all matter, including metals, is the atom, which means “unable to be cut” in Greek. The concept of the atom...
Abstract
The building block of all matter, including metals, is the atom. This chapter initially provides information on atomic bonding and the crystal structure of metals and alloys, followed by a description of three crystal lattice structures of metals: face-centered cubic, hexagonal close-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid solution. It also explains the aspects of a phase diagram that shows what phase or phases are present in the alloy under conditions of thermal equilibrium. Finally, a discussion on the applications of equilibrium phase diagrams is presented.
Image
Published: 31 December 2020
Fig. 17 Illustration of the generation of either a face-centered cubic (fcc) or hexagonal close-packed (hcp) structure, depending on the locations of atoms on the close-packed third layer. Source: Ref 3
More
Image
Published: 01 October 2011
Fig. 2.24 Illustration of the generation of either a face-centered cubic (fcc) or hexagonal close-packed (hcp) structure, depending on the locations of atoms on the close-packed third layer. Source: Ref 2.4
More
1