Skip Nav Destination
Close Modal
Search Results for
heat treating principles
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 717 Search Results for
heat treating principles
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.9781627083263
EISBN: 978-1-62708-326-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560235
EISBN: 978-1-62708-353-9
... York ( 1977 ) Further Reading Further Reading • Krauss G. Steels: Heat Treating and Processing Principles , ASM International , Materials Park , Ohio (1990) • Thelning K.-E. Steel and Its Heat Treatment , 2nd edition, Butterworths , London ( 1986...
Abstract
This chapter describes the heat treatments called annealing and normalizing for steels and examines the structures formed and the reasons for these treatments. It also provides a description of the special heat treatments, namely, martempering and austempering. Information on intercritical heat treatment is also included.
Image
in Heat Treatment of Aluminum and Other Nonferrous Alloys
> Practical Heat Treating<subtitle>Basic Principles</subtitle>
Published: 31 December 2020
Fig. 8 Partial equilibrium diagram for aluminum-copper alloys, with temperature ranges for precipitation-hardening operations. The vertical lines (a) and (b) show two alloys with 4.5% Cu and 6.3% Cu, respectively. The solubility relationships and heat treating behavior of these compositions
More
Image
Published: 30 April 2024
Fig. 2.1 Schematic sections through high-fired furnaces. (a) Simplest form of direct-fired heat treating furnace. (b) Principles of one form of indirect firing (muffle-type) furnace. Source: Ref 1
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440001
EISBN: 978-1-62708-262-4
.... This is the main reason that steels have been so extensively used in the manufacturing sector of our economy during the twentieth century. The underlying principles of the heat treatment of steel are discussed in Chapter 2, “Fundamentals of the Heat Treating of Steel.” Many nonferrous alloys—namely aluminum...
Abstract
This chapter introduces the principal heat treating processes, namely normalizing, annealing, stress relieving, surface hardening, quenching, and tempering. An overview of four of the more popular surface hardening treatments, namely carburizing, carbonitriding, nitriding, and nitrocarburizing, is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560205
EISBN: 978-1-62708-353-9
... the main thrust of the chapter, which deals with austenitizing prior to heat treating. Dendritic Segregation in Steels Formation of Dendrites The process of solidification of steels involves the formation of crystals (or grains) in the liquid, and their growth. The crystals take on an irregular...
Abstract
Austenitization is the heat treatment of steel in the austenite region, and it is conducted for two reasons. One is to obtain austenite as a necessary precursor for heat treatment, and this is the main emphasis of this chapter. The other is to chemically homogenize steel, so that concentration gradients formed during solidification upon casting are minimized; this is briefly described in this chapter. Austenitization topics covered in this chapter are dendritic segregation in steels, austenitization to remove coring, ingot segregation, grain growth behavior, formation of austenite, austenite grain size, heating in the austenite region, and practical austenitizing temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900109
EISBN: 978-1-62708-358-4
... information on both the principles of fluidized-bed heat treating and the types of furnaces used can be found Ref 5 . A fluid bed results when a gas is passed upward through a bed of small solid particles at a rate fast enough to lift these particles and create turbulence. This motion of particles...
Abstract
Furnaces for heat treatment of tool steels include ceramic-lined salt bath furnaces, vacuum furnaces, controlled-atmosphere furnaces, and fluidized-bed furnaces. This chapter describes the classification, operating principles, application, advantages, and disadvantages of each type of furnace.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050009
EISBN: 978-1-62708-311-9
... Abstract This chapter discusses the basic principles of induction heating and related engineering considerations. It describes the design and operation of induction coils, the magnitude and distribution of magnetic fields, and the forces that generate eddy currents in metals. It explains how...
Abstract
This chapter discusses the basic principles of induction heating and related engineering considerations. It describes the design and operation of induction coils, the magnitude and distribution of magnetic fields, and the forces that generate eddy currents in metals. It explains how induced electrical current causes metal to heat in proportion to their electrical resistance and how it affects temperature dependent properties such as resistivity and specific heat and, in turn, heating rates and efficiencies. It also discusses the effect of hysteresis and explains why eddy currents tend to be confined to the outer surface of the workpiece, a phenomenon known as the skin effect. The chapter includes several data plots showing how the depth of heating varies with frequency and how heating time, power density, and thermal conduction rate correspond with hardening depth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630035
EISBN: 978-1-62708-270-9
... for much of the distortion that occurs during steel heat treating. Keeping the general principles in mind, it is now easy to understand why deep-hardening steels, such as high-alloy and tool steels, can crack if used in relatively small parts or thin sections that are rapidly cooled, or quenched...
Abstract
Residual, or locked-in internal, stresses are regions of misfit within a metal part or assembly that can cause distortion and fracture just as can the more obvious applied, or service, stresses. This chapter describes the fundamental facts about residual stresses and discusses the basic mechanisms of residual stress formation: thermal, transformational, mechanical, and chemical.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440243
EISBN: 978-1-62708-262-4
... Abstract A successful heat treating operation is determined by the ability to satisfy the customer's quality requirements consistently and economically. This chapter reviews the steps that are important to produce quality parts in heat treating with a brief practical explanation of each...
Abstract
A successful heat treating operation is determined by the ability to satisfy the customer's quality requirements consistently and economically. This chapter reviews the steps that are important to produce quality parts in heat treating with a brief practical explanation of each. The steps include selecting proper material and design of the part being treated; determining whether the process is capable of heat treatment; using statistical process control, control charting, and in-process inspection and testing; and applying statistical quality control and final testing (sampling) to verify the results.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440231
EISBN: 978-1-62708-262-4
... Abstract This chapter presents an overview of heat treating of nonferrous alloys. First, a brief discussion on the effects of cold work and annealing on nonferrous alloys is presented. This is followed by a discussion on the mechanisms involved in the more commonly used heat treating procedures...
Abstract
This chapter presents an overview of heat treating of nonferrous alloys. First, a brief discussion on the effects of cold work and annealing on nonferrous alloys is presented. This is followed by a discussion on the mechanisms involved in the more commonly used heat treating procedures for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440009
EISBN: 978-1-62708-262-4
... Abstract Steel is an important material because of its tremendous flexibility in metal working and heat treating to produce a variety of mechanical, physical, and chemical properties. The purpose of this chapter is to present the metallurgical principles of heat treatment of steel...
Abstract
Steel is an important material because of its tremendous flexibility in metal working and heat treating to produce a variety of mechanical, physical, and chemical properties. The purpose of this chapter is to present the metallurgical principles of heat treatment of steel in a generalized manner. The chapter provides a discussion on the constitution of commercially pure iron, subsequently leading to discussion on the iron-carbon alloy system. The chapter also describes the effect of carbon on the constitution of iron and of the solubility of carbon in iron. It provides information on transformations and on the classification of steels by carbon content. The chapter ends with a discussion on the effect of time on transformation and on the use of time-temperature-transformation diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050281
EISBN: 978-1-62708-311-9
... Abstract This chapter discusses quality control programs and procedures for induction heat-treating systems and includes related forms and checklists. induction hardening quality control EFFECTIVE SYSTEMS of quality control/quality assurance are essential for modern-day heat...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250059
EISBN: 978-1-62708-287-7
.... Soc. Steel Treating , Vol 2 , 1922 , p 507 – 15 Davenport E.S. and Bain E.C. , Transformation of Austenite at Constant Subcritical Temperatures , Trans. Am. Instit. Min. Metall. Eng. , Vol 90 , 1930 , p 117 – 54 Grossman M.A. , The Principles of Heat Treatment...
Abstract
This chapter discusses the evolution of engineering alloy steels, namely chromium, nickel, and nickel-chromium alloy steels. The discussion includes the automotive demand and development of specifications for the alloy steels. It also covers various research on heat treatment of alloy steels, providing information on hardening, transformation of austenite, hardenability testing, and tempering of as-quenched martensite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
... Abstract Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other...
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
... Abstract Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440159
EISBN: 978-1-62708-262-4
... Abstract This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic...
Abstract
This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be followed for processing of stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380001
EISBN: 978-1-62708-456-7
... Abstract Critical process variables must be controlled to ensure uniform and repeatable heat-treating results. This chapter covers the subject of controlling the heat-treating process. All heat-treating equipment utilizes various sensors, timers, and other components to monitor and control...
Abstract
Critical process variables must be controlled to ensure uniform and repeatable heat-treating results. This chapter covers the subject of controlling the heat-treating process. All heat-treating equipment utilizes various sensors, timers, and other components to monitor and control the process utilizing various control methods. The chapter focuses on temperature control and measurement, including a discussion about thermocouples and devices for measuring thermal and electrical conductivity.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.9781627083539
EISBN: 978-1-62708-353-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560087
EISBN: 978-1-62708-353-9
..., and improper cooling causes difficulties which cannot be relieved by treatments in subsequent steps in the heat treating process. Thus, it is important to understand the factors which affect the cooling process. Since most heat treatments for hardening involve cooling in a liquid (e.g., oil, water...
Abstract
This chapter examines the cooling of steels from the austenite region. It describes the processes of determining the severity of quench. The chapter examines the methods to estimate the quench required if the size and shape of the part are known and the required cooling rate is known. The cooling rate correlation is used to calculate the hardness distribution across the diameter of cylinders. The calculations are used to illustrate the sensitivity of the hardness distribution to the severity of quench and the hardenability. The chapter discusses the methods of determining cooling rates in quenched steel components. It describes the formation of residual stresses in materials in which no phase change occurs on cooling. The chapter also examines the effect on the residual stresses of the phase changes in austenite. It provides information on two types of quench cracks in quenched steels, namely, microcracking and gross cracking during quenching.
1