Skip Nav Destination
Close Modal
Search Results for
heat treating costs
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 596
Search Results for heat treating costs
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Calculation of Heat Treating Costs
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380223
EISBN: 978-1-62708-456-7
... Abstract This article presents a simple cost/pricing system that is reasonably accurate and could easily be recalculated if the yearly cost of any of the basic cost components change. Using the example of a commercial heat treating facility, the operational details are categorized as atmosphere...
Abstract
This article presents a simple cost/pricing system that is reasonably accurate and could easily be recalculated if the yearly cost of any of the basic cost components change. Using the example of a commercial heat treating facility, the operational details are categorized as atmosphere processes, induction processes, aluminum processes, high-heat processes, and secondary processes. For the purpose of calculating the heat treatment processing cost per hour and the selling price for a piece of equipment, the costs are separated into direct costs, allocated costs, capitalized cost, and general and administrative costs. The article discusses the techniques involved in allocating costs to the group of equipment, and presents a description on the cost analysis of endothermic gas.
Book Chapter
Selection of Heat Treat Process for Optimum Gear Design
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320185
EISBN: 978-1-62708-347-8
... Abstract The successful design and manufacture of gears are influenced largely by design requirements, material selection, and proper heat treatment. This chapter addresses the cost factors and tradeoffs involved in selecting a material, design features, and a heat treating process to optimize...
Abstract
The successful design and manufacture of gears are influenced largely by design requirements, material selection, and proper heat treatment. This chapter addresses the cost factors and tradeoffs involved in selecting a material, design features, and a heat treating process to optimize gear performance for a particular application.
Book Chapter
Introduction to Gear Heat Treatment
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320001
EISBN: 978-1-62708-347-8
... characteristics of high strength per unit volume and low cost per pound. These are the primary reasons that steel gears are used predominantly in industry today. Furthermore, the vast majority of gears made from either plain carbon or alloy steels is heat treated to increase strength and life. Although both plain...
Abstract
Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels are preferred because of higher hardenability and the desired microstructures of the hardened case and core needed for the high fatigue strength of gears. This chapter provides an overview of the key considerations involved in the selection and application of heat treating processes for alloy steel gears and serves as an introduction to the subsequent chapters in this book.
Book Chapter
Economics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220315
EISBN: 978-1-62708-341-6
..., the material cost constitutes as much as one-half or more of the net cost of the finished product. Because of this, material loss, as scale or scrap, is a prime factor in any economic analysis. Scaling occurs during heating of steels prior to forming or during heat treating processes. In heating of steel...
Abstract
Induction heating is a rapid, efficient technique for producing localized or through heating in a wide range of industries. The economics as well as the technical feasibility of induction heating should be important considerations prior to investing in such a system. A number of cost elements enter into the analysis. These include equipment and energy costs, production lot size and ease of automation, material savings, labor costs, and maintenance requirements. This chapter discusses each of these factors. It compares the cost elements of induction heating with those of its main competitor, gas-fired furnace heating. Several typical examples are provided to illustrate the economic considerations in design and application of induction heating processes.
Book Chapter
Types of Heat Treating Furnaces
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380017
EISBN: 978-1-62708-456-7
.... The heart of heat treating is the furnace. No single furnace has ever been built that can handle the full range of work—the different product sizes, shapes, weights, and production flows—while minimizing the processing costs for each. Furnaces of many different types and designs are available in all shapes...
Abstract
This chapter details the types of heat treating furnaces. It discusses energy sources and modes of heat transmission. The chapter’s focus is on the different types of batch furnaces and continuous furnaces, including box furnaces, integral-quench batch furnaces, pit furnaces, furnaces for heat treating with fluidized beds, and straight chamber continuous furnaces.
Book Chapter
Furnaces and Related Equipment for Heat Treating
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440055
EISBN: 978-1-62708-262-4
... cost factor in favor of the fluidized bed. Actually, fluidized beds can be adapted to virtually all heat treating operations, which include hardening of steel (even high-speed tool steels), normalizing, annealing, stress relieving, carburizing, carbonitriding, and tempering. Fluidized beds are also...
Abstract
This chapter, a detailed account of furnaces and related equipment for heat treating, begins by describing three basic modes of heat transmission, namely conduction, convection, and radiation, followed by a discussion on the working principle, applications, advantages, and disadvantages of furnaces classified based on the heat transfer medium employed. The types of furnaces covered are batch-type, continuous-type, liquid bath, fluidized bed, and vacuum. The subsequent sections provide information on furnace parts, fixtures, quenching mediums, and quenching systems. The final section of the chapter describes the types of atmospheres available, emphasizing their applications and limitations.
Book Chapter
Economics of Aluminum Extrusion
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2025
DOI: 10.31399/asm.tb.aet2.t59420333
EISBN: 978-1-62708-487-1
... may incur higher heat treatment costs. Fig. 8.11 Major process steps connected to postextrusion heat treatment processes for “W” or “T” tempers. QA, quality assurance Aerospace extrusions require post-heat-treat processing, including controlled stretching between 1.5 and 3% permanent set...
Abstract
Variables affecting the cost of aerospace extrusions, including extrusion geometry, billet alloy, press size, order quantity, and the length of extrusion and final temper, are discussed in this chapter. Energy and labor inputs at various stages for aerospace extrusions are shown. The chapter offers insights into the economics of producing aerospace extrusions in a highly competitive global business market.
Book Chapter
Introduction
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
... Abstract Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other...
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
Book Chapter
Through Hardening
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250155
EISBN: 978-1-62708-345-4
... the desired hardness at the roots of teeth because of the grade of steel, tooth size, and heat treat practice. If gear tooth root hardness is critical to a design, then it should be specified and measured on a sample (coupon) processed with the gears. However, needless increase of material cost by selecting...
Abstract
The through-hardening process is generally used for gears that do not require high surface hardness. Four different methods of heat treatment are primarily used for through-hardened gears. In ascending order of achievable hardness, these methods are annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter discusses the processes involved in the through-hardening of gears. It provides information on designing procedures, hardness, distortion, and applications of the through-hardened gears. The chapter presents a case history on the design and manufacture of a through-hardened gear rack.
Book Chapter
Flame and Induction Hardening
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440159
EISBN: 978-1-62708-262-4
... Abstract This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic...
Abstract
This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be followed for processing of stainless steels.
Book Chapter
Specifying Steel Castings
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200065
EISBN: 978-1-62708-354-6
.... Different compositions and heat treatments provide different wear resistances at the same hardness level. Hardness is usually specified by a Brinell hardness range: either an impression diameter in mm or a Brinell hardness number (BHN). A useful approximation of the tensile strength of heat-treated...
Abstract
This chapter discusses the role of standards and specifications for steel castings. It defines specifications and discusses how certification, testing, examination, methods, practices, procedures, compositions, properties, facilities, statistical process control, and documentation relate to codes and standards. The chapter describes processes involved in the selection of specifications for steel castings. Further, it provides information on the cost of specifications.
Book Chapter
Failures Come in All Shapes and Sizes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... evidence that the heat treatment was performed adequately. To reduce costs, some companies drop the requirement for the tensile test and only require the hardness test. I once reviewed the heat treatment specification for a company that regularly heat treated Inconel 718, a nickel-base superalloy...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Book Chapter
Through-Hardening Gears
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320021
EISBN: 978-1-62708-347-8
... practice. If gear tooth root hardness is critical to a design, then it should be specified and measured on a sample (coupon) processed with the gears. However, needless increase of material cost by selecting a higher grade of steel should be avoided. Heat Treat Distortion of Through-Hardened Gears...
Abstract
Through-hardening heat treatment is generally used for gears that do not require high surface hardness. In through hardening, gears are first heated to a required temperature and then cooled either in the furnace or quenched in air, gas, or liquid. Four heat treatment methods are primarily used for through-hardened gears: annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter begins with a discussion of these through-hardening processes. This is followed by sections providing some factors affecting the design and hardness levels of through-hardened gears. Next, the chapter reviews the considerations related to distortion of through-hardened gears. It then discusses the applications of through-hardened gears. Finally, the chapter presents a case history of the design and manufacture of a through-hardened gear rack.
Book Chapter
Finishing, Heat Treatment and Inspection
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200197
EISBN: 978-1-62708-354-6
... of abrasive is usually directed at the casting by means of a hand-held hose and nozzle. Although cast steel shot, heat treated to a tough, hard structure is the most popular abrasive used in steel foundries, other abrasive materials that are used include steel grit, iron shot or grit, cut wire, or other...
Abstract
After pouring, castings are allowed to solidify and cool. They are later removed from the molds in the shakeout operation. A series of activities then follow, which are generally referred to as finishing and heat treatment. These activities can be broadly categorized as shakeout, abrasive blast cleaning, removal of risers, ingates, and discontinuities, rough inspection, removal of discontinuities, finishing welding, heat treatment, and final visual, dimensional, and NDT inspection. This chapter provides a detailed discussion on these activities.
Book Chapter
Process Selection Guidelines
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410247
EISBN: 978-1-62708-280-8
... heat treated without blisters. 9.2.3 Tooling Cost Usually large-sized castings have lower annual volumes. Lower cast tooling for air set sand is adequate. Casting of about 10,000 to 50,000 pieces per year may require wooden, plastic, or aluminum tooling. Higher volumes may need cast iron or H-13...
Abstract
This chapter presents guidelines for product designers to choose the best process and alloys while designing a casting. The discussion covers some of the factors pertinent to the selection of the best process for the product function and performance, namely geometric factors, mechanical properties, tooling cost per piece, and overall cost factors. The chapter contains tables listing several markets, products, popular processes, and common alloys and the common processes used for a variety of markets and products.
Book Chapter
Carburizing and Hardening Gears
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320033
EISBN: 978-1-62708-347-8
... carburizing offers some significant benefits in time, cost, and quality. A major reduction of time is in the heating-up phase of the process, where the parts are loaded into a cold furnace; parts and furnace are then heated up together. Furthermore, the process allows a stepped heat-up mode, which has also...
Abstract
The primary objective of carburizing and hardening gears is to secure a hard case and a relatively soft but tough core. For this process, low-carbon steels (up to a maximum of approximately 0.30% carbon), either with or without alloying elements (nickel, chromium, manganese, molybdenum), normally are used. The processes involved in hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears are discussed. Next, the chapter reviews the selection of materials for carburized gears and considerations related to carbon content, core hardness, and microstructure. This is followed by sections discussing some problems that can be experienced in the carburizing process and how these can be addressed, including a section on shot peening to induce compressive residual stress at and below the surface. It then discusses the applications of carburized gears and finally presents a case history of distortion control of carburized and hardened gears.
Book Chapter
Heat Treatment of Steel
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060197
EISBN: 978-1-62708-261-7
... Abstract This chapter discusses the types, methods, and advantages of heat treating procedures, including annealing, normalizing, tempering, and case hardening. It describes the iron-carbon system, the formation of equilibrium and metastable phases, and the effect of alloy elements...
Abstract
This chapter discusses the types, methods, and advantages of heat treating procedures, including annealing, normalizing, tempering, and case hardening. It describes the iron-carbon system, the formation of equilibrium and metastable phases, and the effect of alloy elements on hardenability and tempering response. It discusses the significance of critical temperatures, the use of transformation diagrams, and types of annealing treatments. It also provides information on heat treating furnaces, the effect of heating rate on transformation temperatures, quench and temper procedures, and the use of cold treating.
Book Chapter
Introduction to Steel Castings
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200001
EISBN: 978-1-62708-354-6
...? A steel casting is the product formed by pouring molten steel into a mold cavity. The liquid steel cools and solidifies in the mold cavity and is then removed for cleaning. Heat treating may be required to meet desired properties. This process provides the near net shape and mechanical properties...
Abstract
This chapter defines steel castings, explains when to use steel castings, gives an overview of casting processes, and gives examples of suitable applications for cast steel parts.
Book Chapter
Surface Hardening of Steel
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380085
EISBN: 978-1-62708-456-7
... treatment steel SURFACE HARDENING differs from through hardening and involves special heat treating requirements and important process control variables for specific treatment categories. The major advantages of surface hardening steels over conventional hardening are: Surface hardening produces...
Abstract
This chapter describes case depth and discusses flame hardening, laser heat treatment, electron beam hardening, induction heat treatment, and induction hardening.
Book Chapter
History of Metallurgy and Induction Heating
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050001
EISBN: 978-1-62708-311-9
... Abstract This chapter provides a brief review of the scientific and technological developments leading to the widespread use of induction heat treating and its many applications in industry. induction heating THIS CHAPTER includes a brief history of metallurgy, followed...
Abstract
This chapter provides a brief review of the scientific and technological developments leading to the widespread use of induction heat treating and its many applications in industry.
1