Skip Nav Destination
Close Modal
Search Results for
green strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 243 Search Results for
green strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Compacting and Shaping
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 4.5 Green strength versus green density of 316L powder admixed with various lubricants and additives compacted at 414, 552, and 662 MPa (30, 40, and 48 tsi), respectively. Source: Ref 5 . Reprinted with permission from MPIF, Metal Powder Industries Federation, Princeton, NJ
More
Image
Published: 01 November 2013
Fig. 4 Effect of particle porosity on (a) green density and (b) green strength of solid and porous iron powders. Powders were pressed at 414 MPa (30 tsi) using die wall lubrication. The figures in parentheses in (a) signify specific surface areas (as measured by the gas adsorption method
More
Image
in Manufacture and Characteristics of Stainless Steel Powders
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 3.7 Effect of apparent density on green strength and compressibility of 316L stainless steel powders. Source: Ref 34
More
Image
in Manufacture and Characteristics of Stainless Steel Powders
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Image
Published: 01 November 2013
Fig. 3 Effect of residual carbon content on compressibility and green strength of water-atomized high-carbon iron. Pressed at 550 MPa (40 tsi) with 1% zinc stearate admixed. Symbols represent experimental data points. Source: Ref 4
More
Image
Published: 30 April 2020
Fig. 4.7 Tests for green strength rely on a bending arrangement. The most common is the three-point test, involving two lower support rods and a single loaded top rod. The sample is fractured with little deflection. A parallel test relies on four-point bending, but it is less common, although
More
Image
in Compacting and Shaping
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 4.10 Green strengths of 409L obtained under various compaction pressures using warm compaction and room-temperature (RT) compaction. GD, green density. Source: Ref 10 . Reprinted with permission from MPIF, Metal Powder Industries Federation, Princeton, NJ
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000039
EISBN: 978-1-62708-312-6
..., significant changes occur in the shape of the powder particles, accompanied by large-scale reduction in porosity. Because plastic deformation leads to strain hardening, the pressure required for incremental densification becomes larger and larger as compaction progresses. Green strength of the compact...
Abstract
This chapter discusses the methods by which stainless steel powders are shaped and compacted prior to sintering, including rigid die compaction, metal injection molding, extrusion, and hot isostatic pressing. It explains where each process is used and how processing parameters, such as temperature and pressure, and powder characteristics, such as particle size and shape, influence the quality of manufactured parts. It describes the various stages of metal powder compaction, the role of lubricants, and how to account for dimensional changes in the design of tooling and process sequences.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
... lubricants include stearic acid, synthetic waxes, zinc stearate, lithium stearate, and mixtures of these. The addition of a lubricant to a powder affects many of its engineering properties, including powder flow, apparent density, green strength, and compressibility. Lubricant optimization usually consists...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
... introductory concepts are appropriate at this point. The term green refers to the shaped body prior to firing; the density after shaping is the green density, and the strength after shaping is the green strength. Lubricants are related to binders, but binders are different from lubricants. The binder ensures...
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000023
EISBN: 978-1-62708-312-6
..., such as apparent density, flowability, green strength, compressibility, and so on. In most cases, the dependence of these engineering properties on fundamental properties is known only qualitatively, which accounts for the still large empirical content in powder metallurgy (PM) processing. This also holds true...
Abstract
Stainless steel powders are usually made by water or gas atomization. This chapter describes both processes and the properties and characteristics of the powders they produce. It also discusses secondary processes, including drying, screening, annealing, and lubricating, and the effects of iron contamination on corrosion resistance.
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 4 SEM image of a stainless steel powder having a marginally irregular particle shape, leading to high apparent density, low green strength, high compressibility, and a high flow rate
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 1 SEM image of a water atomized stainless steel powder (316L) having a moderately irregular particle shape, leading to a good combination of apparent density, green strength, compressibility, and flow rate
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 2 SEM image of a stainless steel powder (409L) having a highly irregular particle shape, leading to low apparent density, high green strength, low compressibility, and marginal flow rate
More
Image
Published: 30 April 2020
Image
in Compacting and Shaping
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 4.2 Effect of relative amounts of lithium stearate and Acrawax C on the green strength of 316L, compacted at 414, 552, and 662 MPa (30, 40, and 48 tsi), respectively. The total amount of the two lubricants was 1.0% by weight in all cases. Source: Ref 5 . Reprinted with permission from
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000203
EISBN: 978-1-62708-312-6
... Fig. 1 SEM image of a water atomized stainless steel powder (316L) having a moderately irregular particle shape, leading to a good combination of apparent density, green strength, compressibility, and flow rate Fig. 2 SEM image of a stainless steel powder (409L) having a highly irregular...
Abstract
This atlas contains images showing how sintering conditions (time, temperature, and atmosphere) and compaction pressure affect the microstructure of different types of stainless steel. It also includes images of stainless steel powders, fracture surfaces, and test specimens characterized by the presence of compounds, such as oxides, carbides, and nitrides, and various forms of corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
... layer by layer. Ink jetting is performed with multiple heads that may contain from 1 to 1000 or more nozzles. After the build is completed, usually in a few hours but with possibly hundreds of parallel builds, the binder-treated green powder is cured to add strength. The residual loose powder...
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720393
EISBN: 978-1-62708-305-8
..., density determines mechanical and physical properties. For example, higher density in sintered steels results in higher tensile strength, elongation, and impact resistance. As-pressed or green density also influences growth or shrinkage that occurs during sintering. With nonuniform green density, parts...
Abstract
Fabricated powder metallurgy (P/M) parts are evaluated and tested at several stages during manufacturing for part acceptance and process control. The various types of tests included are dimensional evaluation, density measurements, hardness testing, mechanical testing, and nondestructive testing. This chapter is a detailed account of these testing methods. It describes the four most common types of defects in P/M parts, namely ejection cracks, density variations, microlaminations, and poor sintering. The chapter discusses the capabilities and limitations of various nondestructive evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography, computed tomography, gamma-ray density determination, and ultrasonic techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000223
EISBN: 978-1-62708-312-6
...; sometimes called an ingot. burr. An edge protrusion on a pressed compact or a coined part caused by plastic flow of metal binder (noun). A cementing medium; either a into the clearance space between a punch and material added to the powder to increase the a die cavity. Synonymous with flash. green strength...
1