Skip Nav Destination
Close Modal
Search Results for
gravity-drop hammers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 38 Search Results for
gravity-drop hammers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Presses and Hammers for Cold and Hot Forging
> Cold and Hot Forging: Fundamentals and Applications
Published: 01 February 2005
Fig. 11.31 Principles of various types of gravity-drop hammers. (a) Board drop. (b) Belt drop. (c) Chain drop. (d) Air drop
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040115
EISBN: 978-1-62708-300-3
..., ram velocities, and energy and stiffness requirements. It also includes information on gravity- and power-drop hammers and where and how they are typically used. gravity-drop hammers hydraulic presses mechanical presses power-drop hammers screw presses 11.1 Introduction...
Abstract
This chapter discusses the design and operation of forging presses and hammers. It covers the most common types of presses, including hydraulic, mechanical, and screw presses, explaining how they work and comparing and contrasting their load and displacement profiles, stroke lengths, ram velocities, and energy and stiffness requirements. It also includes information on gravity- and power-drop hammers and where and how they are typically used.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040107
EISBN: 978-1-62708-300-3
...(a) 0.06–0.30(a) Mechanical press 0.2–5 0.06–1.5 Screw press 2–4 0.6–1.2 Gravity drop hammer 12–16 3.6–4.8 Power drop hammer 10–30 3.0–9.0 Counterblow hammer (total speed) 15–30 4.5–9.0 HERF machines 20–80 6.0–24.0 Low-speed Petroforge 8–20 2.4–6.0 Source...
Abstract
Forging machines vary based on factors such as the rate at which energy is applied to the workpiece and the means by which it is controlled. Each type has distinct advantages and disadvantages, depending on lot size, workpiece complexity, dimensional tolerances, and the alloy being forged. This chapter covers the most common types of forging machines, explaining how they align with basic forging processes and corresponding force, energy, throughput, and accuracy requirements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
... operations can be conducted with either gravity or power drop hammers and are used for both open- and closed-die forgings. Hammers deform the metal at high deformation speeds; therefore, it is necessary to control the length of the stroke, the speed of the blows, and the force being exerted. Hammer...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
... hardness, as a result of which the sample hardness is ultimately underestimated. In the Shore method, a falling steel hammer with an indenter made of a natural diamond at its top is dropped onto the sample from a specified height. After deformation of the sample, the hammer rebounds to a specific...
Abstract
In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms of plastic behavior. This chapter describes the most important and widespread dynamic hardness testing methods. These tests fall into two categories: methods in which the deformation is measured and methods in which the energy is measured. Methods that measure deformation include the Poldi hammer method, the shearing force method, the Baumann hammer method, and the Dynatest method. Methods that measure energy include the Shore method, the Leeb method, and the Nitronic method. The chapter concludes with a discussion of applications of dynamic hardness testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480243
EISBN: 978-1-62708-318-8
... 152 6 0.51 0.020 305 12 305 12 … 100 Drop-Hammer Forming Gravity-hammer and pneumatic drop-hammer presses form titanium by progressive deformation with repeated blows in matched dies. These processes are suited to forming recessed sheet parts from materials that are not sensitive...
Abstract
This chapter describes the equipment and processes used to form titanium alloy parts. It discusses the advantages and disadvantages of hot and cold forming, the factors that influence formability, and the effect of forming temperature and lubricants. It describes common processes, including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
... is a process for producing shapes by the progressive deformation of sheet metal in matched dies under repetitive blows of a gravity-drop or power-drop hammer ( Fig. 2.20 ): Equipment: hammers Materials: carbon and alloy steels, aluminum alloys, titanium alloys Process Variations : coining...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
... Abstract This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.9781627083003
EISBN: 978-1-62708-300-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... or power drop hammers and are used for both open- and closed-die forgings. Hammers deform the metal with high deformation speed; therefore, it is necessary to control the length of the stroke, the speed of the blows, and the force being exerted. Hammer operations are frequently used to conduct preliminary...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
... area, named after Brunauer, Emmett, and Teller, who developed the concept in 1938. Gas permeability also depends on the surface area. The measurement applies a small pressure drop along a column containing the powder, and the flow rate is used to calculate the surface area. Surface area measurement...
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410151
EISBN: 978-1-62708-280-8
... Abstract This chapter discusses the various factors pertinent to gravity permanent mold (GPM) castings, along with their advantages, limitations, and significance. The discussion covers the geometric factors, process and manufacturing elements, gating practices, and feeding principles...
Abstract
This chapter discusses the various factors pertinent to gravity permanent mold (GPM) castings, along with their advantages, limitations, and significance. The discussion covers the geometric factors, process and manufacturing elements, gating practices, and feeding principles of and pouring systems in GPM. The influences of mold coatings on GPM and low pressure permanent mold castings are described. The chapter also discusses various processes involved in the engineering of core boxes and cooling of GPM for casting integrity and cycle time control. It provides information on some of the processes involved in post-casting operations, namely de-coring and de-gating. The key design aspects for consideration in water quenching during the T6 heat treatment are reviewed. The chapter also provides information on two critical cycle events important in engineering at the manufacturing facility: tipper cycle planning and table or cell cycle planning.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410215
EISBN: 978-1-62708-280-8
... of rib–rim junction Dynamic side impact resistance Curb impact on window, spoke Wheel at 13 deg. to horizontal Loading block of 576 kg dropped from 230 mm (9 in.) above the wheel High elongations of inboard and outboard rim flanges for high plastic strain, due to curb impact...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.9781627083461
EISBN: 978-1-62708-346-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850334
EISBN: 978-1-62708-260-0
... of two samples with the same or different geometry under a known load can also be used to measure hardness. Dynamic tests A rounded diamond-tipped hammer, or similar device, is dropped from a known height onto the specimen surface. The height of the rebound is a measure of the hardness...
Abstract
Hardness tests provide valuable information about the quality of materials and how they are likely to perform in different types of service. This chapter covers some of the most widely used hardness testing methods, including Vickers, Rockwell, and Brinell tests, Shore scleroscope and Equotip hardness tests, and microindentation tests. It describes the equipment and procedures used, discusses the factors that influence accuracy, and provides hardness conversion equations for different types of materials. It also explains how hardness testing sheds light on anisotropy, machinability, wear, fracture toughness, and tensile strength as well as temperature effects, residual stress, and quality control.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060429
EISBN: 978-1-62708-261-7
... for removing scale or investment material from castings. desulfurizing. The removal of sulfur from mol- 436 / Metallurgy for the Non-Metallurgist, Second Edition the platform can be lowered; therefore, it is drop hammer. A term generally applied to forg- often called semicontinuous casting. ing hammers...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400233
EISBN: 978-1-62708-316-4
... that hold the die and locate it for the punches. die block A block, often made of heat treated steel, into which desired impressions are ma- chined or sunk and from which closed-die forgings or sheet metal stampings are pro- duced using hammers or presses. In forging, die blocks are usually used in pairs...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.9781627083164
EISBN: 978-1-62708-316-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.9781627082617
EISBN: 978-1-62708-261-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... moves out of parallel with the radiation beam. In an eddy-current or ultrasonic test, the length of probe movement between the indication end points is what is being measured. The definition of the end points can be a problem. The most common method employed in ultrasonic tests is the 6 dB drop...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
1