Skip Nav Destination
Close Modal
Search Results for
graphitic corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 304 Search Results for
graphitic corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2000
Fig. 51 Examples of graphitic corrosion of gray cast-iron parts. (a) Cross sections cut through graphitically corroded regions will readily show bright, intact metal surrounded by a soft, dark, corroded area. (b) Graphitically corroded valve butterfly. Original surface contours are preserved
More
Image
in Effects of Metallurgical Variables on Dealloying Corrosion[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 4 A 200 mm (8 in.) diameter gray iron pipe that failed because of graphitic corrosion. The pipe was part of a subterranean fire control system. The external surface of the pipe was covered with soil; the internal surface was covered with water. Severe graphitic corrosion occurred along
More
Image
in Sintering and Corrosion Resistance
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 5.54 Effect of sintering temperature and graphite addition on (a) corrosion resistance and (b) carbon and oxygen content of vacuum-sintered 316L (green densities: 6.6 g/cm 3 ; cooling rate: 30 °C/min, or 54 °F/min). Reprinted with permission from MPIF, Metal Powder Industries Federation
More
Image
Published: 01 January 2022
Fig. 7.48 Graphite influencing corrosion reduction in iron compared with mild steel. Source: Ref 2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
.... Carbon-filled polymers can act as noble metals in a galvanic couple. Graphite-epoxy structures in aerospace applications must be adequately insulated from aluminum to prevent galvanic corrosion. Another example is the behavior of conductive films, such as mill scale (magnetite, Fe 3 O 4 ) or iron...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030082
EISBN: 978-1-62708-282-2
... is the bright yellow, intact, admiralty brass outer tube wall. Width of figure is 2.5 mm (0.1 in.). Courtesy of James J. Dillon. Permission granted by Nalco Chemical Company, 1987 Graphitic Corrosion Another major example of dealloying is graphitic corrosion that occurs in gray cast iron. Gray cast...
Abstract
This chapter discusses the effects of metallurgical variables on dealloying corrosion. It begins by describing the processes involved in dealloying of metal alloys in aqueous environments. This is followed by a discussion on the morphology of porous dealloyed structures below and above the critical potential. Some features experimentally observed for dealloying systems are then considered. The chapter concludes by briefly reviewing the proposed mechanisms for the formation of porous metals, namely ionization-redeposition mechanism, surface diffusion mechanism, volume diffusion mechanism, and percolation model of selective dissolution.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240323
EISBN: 978-1-62708-251-8
... develops on the surface and destroys the oxide layer, it forms a local anodic area, and corrosion is accelerated. Galvanic series in seawater Table 18.2 Galvanic series in seawater Cathodic (protected) Platinum Gold Graphite Titanium Silver Stainless steels (passive...
Abstract
This chapter first covers some basic principles of electrochemical corrosion and then some of the various types of corrosion. Some of the more common types of corrosion discussed include uniform corrosion, galvanic corrosion, pitting, crevice corrosion, erosion-corrosion, cavitation, fretting corrosion, intergranular corrosion, exfoliation, dealloying corrosion, stress-corrosion cracking, and corrosion fatigue. The chapter discusses the processes involved in corrosion control by retarding either the anodic or cathodic reactions. The rate of corrosion is reduced by conditioning of the metal, by conditioning the environment, and by electrochemical control. Finally, the chapter deals with high-temperature oxidation that usually occurs in the absence of moisture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910497
EISBN: 978-1-62708-250-1
... solution alloy. Also called parting or selective leaching. See also dezincification and graphitic corrosion. depolarization. The removal of factors resisting the current in an elec- trochemical cell. deposit corrosion. Corrosion occurring under or around a discontinu- ous deposit on a metallic surface...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870179
EISBN: 978-1-62708-299-0
... Abstract This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite...
Abstract
This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite-aluminum composites and the use of protective coatings and design criteria for corrosion prevention.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
... of iron from gray iron is called graphitic corrosion. During dealloying, typically one of two processes occurs: alloy dissolution and replating of the more-cathodic element, or selective leaching of the more-anodic alloying element. Dezincification occurs in copper-zinc brasses containing more than 15...
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
..., and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods. corrosion characteristics structural materials corrosion applications materials selection carbon steels weathering steels alloy steels nickel copper aluminum titanium...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350011
EISBN: 978-1-62708-315-7
... of the dissolved element. For example, the preferential leaching of zinc from brass is called dezincification. If aluminum is removed, the process is called dealuminification, and so forth. In the case of gray iron, dealloying is called graphitic corrosion. In the dealloying process, typically one of two...
Abstract
This chapter discusses the basic principles of corrosion, explaining how and why it occurs and how it is categorized and dealt with based on the appearance of corrosion damage or the mechanism of attack. It explains where different forms of corrosion are likely to occur and identifies metals likely to be affected. It also discusses the selection and use of protective coatings and the tests that have been developed to measure their effectiveness.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320031
EISBN: 978-1-62708-332-4
... and ferrite matrix) 39 – 49 Compacted graphite iron (C.E. = 3.9–4.1%) 38 – 43.5 Ductile iron (pearlite and ferrite matrix) 32.5 – 36.5 4.14.1.6 Corrosion Resistance Cast iron and steel corrode, but the dense, strong, and insoluble layer of graphite products in cast iron that adhere...
Abstract
This chapter discusses the crystal structures of steel and cast iron, the iron-iron carbide equilibrium diagram, microconstituents or phases in the iron-iron carbide phase diagram, the iron-carbon carbide-silicon equilibrium diagram of cast irons, and the influence on microstructure by base elements and alloying elements. Graphitization, cooling rates, and heat treatment effects are covered. There also is discussion on inoculation benefits, flake graphite types and typical applications, evolution of cast iron types, ASTM specification A247 for graphite shapes, and selection of the best molding process. A large table lists typical material choices for various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300179
EISBN: 978-1-62708-323-2
...), (d) HB 7.5 Chemical Properties Cast irons rust in water, but the graphite in them tends to aid the formation of a passive film that slows corrosion in some corrodents like water. This is why cast iron pipes 100 or even 200 years old are still in water service. Corrosive soil can locally...
Abstract
This chapter covers the friction and wear behaviors of cast irons. It describes the microstructure and metallurgy of gray, white, malleable, and ductile cast irons, their respective tensile properties, and their suitability for applications involving friction, various types of erosion, and adhesive and abrasive wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170021
EISBN: 978-1-62708-297-6
... they are added, and how they affect various properties, behaviors, and processing characteristics. It explains how silicon, chromium, and nickel, in particular, improve high-temperature, corrosion, and wear performance. annealing corrosion resistance gray iron hardenability normalizing stress...
Abstract
This article covers the metallurgy and properties of gray irons. It describes the classes or grades of gray iron, the types of applications for which they are suited, and the corresponding compositional ranges. It discusses the role of major, minor, and trace elements, how they are added, and how they affect various properties, behaviors, and processing characteristics. It explains how silicon, chromium, and nickel, in particular, improve high-temperature, corrosion, and wear performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400001
EISBN: 978-1-62708-258-7
... steels to improve electrical and magnetic properties as well as hardenability. Increases susceptibility to decarburization. Promotes graphitization in cast irons Nickel (Ni) An essential alloying element in some steels. Added to increase solid-solution strength and hardness as well as to increase...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.9781627083324
EISBN: 978-1-62708-332-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170062
EISBN: 978-1-62708-297-6
... in opposite fashions are selected for their synergistic effect on hardenability. Effects of Alloying on Corrosion Behavior Although graphite shape and matrix microstructure are critical to mechanical properties, neither of these structural variables have a strong effect on corrosion resistance. Hence...
Abstract
This article discusses the metallurgy and properties of ductile cast iron. It begins with an overview of ductile or spheroidal-graphite iron, describing the specifications, applications, and compositions. It then discusses the importance of composition control and explains how various alloying elements affect the properties, behaviors, and processing characteristics of ductile iron. The article describes the benefits of nickel and silicon additions in particular detail, explaining how they make ductile iron more resistant to corrosion, heat, and wear.
Image
in Alteration of Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 3.63 Microstructure of a gray cast iron water pipe with corrosion penetrating below the surface along graphite flake networks (cells) (see arrows). (a) unetched, 50× and (b) 4% picral etch, 500×
More
1