Skip Nav Destination
Close Modal
By
Alfred Goldberg, David L. Olson
By
Waldek Wladimir Bose-Filho, José Ricardo Tarpani, Marcelo Tadeu Milan
Search Results for
grain-boundary sliding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 214
Search Results for grain-boundary sliding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Intergranular crack formation at high temperature by grain-boundary sliding...
Available to PurchasePublished: 01 September 2008
Fig. 22 Intergranular crack formation at high temperature by grain-boundary sliding at (a) triple points and (b) inclusions
More
Image
Micrograph showing intergranular cracking due to grain-boundary sliding. So...
Available to Purchase
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 2.84 Micrograph showing intergranular cracking due to grain-boundary sliding. Source: Ref 2.51
More
Book Chapter
Creep Under Monotonic and Cyclic Loading
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060001
EISBN: 978-1-62708-343-0
... movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep...
Abstract
This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression.
Image
Simplified schematic illustration of the creep-fatigue interaction when ten...
Available to Purchase
in Critique of Predictive Methods for Treatment of Time-Dependent Metal Fatigue at High Temperatures
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 8.21 Simplified schematic illustration of the creep-fatigue interaction when tensile creep occurring along grain boundaries is reversed by compressive plasticity occurring along crystallographic slip planes. (a) Laboratory specimen. (b) Two deformation systems. (c) Grain-boundary sliding
More
Image
Models illustrating how intergranular cracks form due to grain-boundary sli...
Available to Purchase
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 2.83 Models illustrating how intergranular cracks form due to grain-boundary sliding. Source: Ref 2.55
More
Image
Schematic drawings of the way intergranular cracks form due to grain-bounda...
Available to PurchasePublished: 01 July 2009
Fig. 1.11 Schematic drawings of the way intergranular cracks form due to grain-boundary sliding. Source: Ref 1.23
More
Book Chapter
Strain-Range Partitioning—Concepts and Analytical Methods
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
... by sliding along the grain boundary together with tensile-stress-induced void formation within the boundary, this can be schematically illustrated, as shown by the tensile half-cycle in Fig. 3.2(b) . For the compressive portion, plasticity is represented by slip along a favorably oriented slip plane. After...
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Book Chapter
Deformation Processing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... sliding can occur. Creep forming, hot die forging, isothermal forging, and isothermal rolling are processes that rely in part on grain-boundary sliding and other thermally activated deformation mechanisms. The workability, or the ease with which a metal is shaped by plastic deformation, is lower...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Creep
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240265
EISBN: 978-1-62708-251-8
... the grain boundaries themselves. Because diffusion is very sensitive to temperature, at lower temperatures the main diffusion path is along the grain boundaries, since the activation energy for grain-boundary diffusion is considerably less than that for bulk diffusion. Grain-boundary sliding is often...
Abstract
Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. This chapter begins with a section on creep curves, covering the three distinct stages: primary, secondary, and tertiary. It then provides information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction and the approaches to design against creep.
Book Chapter
Strengthening Mechanisms
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000017
EISBN: 978-1-62708-313-3
... to this solid-solution depletion effect. Carbides can also provide strengthening in the same way as precipitates when they occur within the grain, but their main effect is when they occur as intergranular deposits and act to prevent grain-boundary sliding; thus, they improve creep resistance ( Ref 11...
Abstract
This chapter discusses the metallurgical changes that occur and the improvements that can be achieved in superalloys through solid-solution hardening, precipitation hardening, and dispersion strengthening. It also explains how further improvements can be achieved through the control of grain structure, as in columnar-grained alloys, or by the elimination of grain boundaries as with single-crystal superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
... slip and creep strain by grain-boundary sliding) and the distinction of whether they occur during the tensile or compressive half of the cycle. Although quantitative results by the method do not depend on the requirement that these strains be in the slip planes and grain boundaries, this assumption...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Mechanical Properties of Beryllium
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230209
EISBN: 978-1-62708-298-3
... is also an important factor. Heat treatment is important in controlling the distribution of some impurities between grain boundaries and matrix as well as controlling grain size, yield points, and precipitation hardening. The properties discussed are tensile properties, fracture toughness, creep, fatigue...
Abstract
This chapter describes the effect of processing variables on the mechanical properties of beryllium, including tensile and yield strength, fracture toughness, creep and fatigue strength, ductile-to-brittle transition, and notch sensitivity. It also discusses the effects of chemical composition, impurities, and grain size and the use of hydrostatic testing.
Book Chapter
Creep
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
... transgranular fracture. In creep tests in which one or more of the recovery and softening processes become important, all three of the reactions described above determine together the shape of the creep curve. In addition, grain-boundary sliding and intercrystalline fracture may also begin to contribute...
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Image
Examples of CP damage and cracking in AISI type 316 stainless steel at 705 ...
Available to Purchase
in Strain-Range Partitioning—Concepts and Analytical Methods
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 3.16 Examples of CP damage and cracking in AISI type 316 stainless steel at 705 °C (1300 °F), at only 10% of expected creep-fatigue life. (a) Voiding in grain boundaries and slip-plane sliding. (b) Intergranular cracking and slip-plane sliding. Source: Ref 3.3
More
Book Chapter
High-Temperature Failures
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... diffusion. Grain-Boundary Sliding Grain-boundary sliding is often observed in the final stages of creep, just prior to failure. As the grains change shape, relative movement of the grain centers is necessary to maintain continuity at the grain boundaries. The grains actually start rotating...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Book Chapter
General Aspects of Failure Analysis
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
...) Selective phase attack Thickness and morphology of corrosion scales May show localized distortion at surface consistent with direction of motion Identify embedded particles Microstructural change typical of overheating Multiple intergranular cracks Voids formed on grain boundaries...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Book Chapter
Recovery, Recrystallization, and Grain Growth
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240117
EISBN: 978-1-62708-251-8
... to the nonhomogeneous deformation of the structure as a result of the anistropic nature of the large grains. However, coarse grains are beneficial for creep resistance in high-temperature alloys because they are more resistant to grain-boundary sliding and rotation. Fig. 8.24 Effect of grain size on cold-drawn...
Abstract
Annealing, a heat treatment process, is used to soften metals that have been hardened by cold working. This chapter discusses the following three distinct processes that can occur during annealing: recovery, recrystallization, and grain growth. The types of processes that occur during recovery are the annihilation of excess point defects, the rearrangement of dislocations into lower-energy configurations, and the formation of subgrains that grow and interlock into sub-boundaries. The article also discusses the main factors that affect recrystallization. They are temperature and time; degree of cold work; purity of the metal; original grain size; and temperature of deformation. The types of grain growth discussed include normal or continuous grain growth and abnormal or discontinuous grain growth.
Book Chapter
Superalloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
... of grain-boundary sliding during high-temperature service. If there are no carbides along the grain boundaries, voids can form and cause excessive grain-boundary sliding. Carbon is added to form carbides in both the matrix and at the grain boundaries. In nickel-base alloys, wrought alloys contain...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
Book Chapter
Basic Single-Load Fracture Modes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630063
EISBN: 978-1-62708-270-9
... and of all the other cells, which are similarly oriented, in an individual crystal or grain. This distortion tends to either lengthen or shorten the diagonal plane, changing the upper and lower cube faces from squares to parallelograms. Shear deformation, then, actually represents a sliding action...
Abstract
From a fundamental standpoint, there are only two modes, or ways, in which metals can fracture under single, or monotonic, loads: shear and cleavage. There are fracture modes other than shear and cleavage. These include intergranular and quasi-cleavage fracture modes for single-load applications, and fatigue for multiple-load applications. Each of these fracture modes are discussed in this chapter. The factors affecting the ductile brittle relationship are also covered.
Book Chapter
Magnesium and Zinc
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
... in magnesium alloys occurs primarily by grain-boundary sliding, and as the temperature in these alloys increases, the β phase at the grain boundaries softens, allowing grain-boundary sliding. Peak-aged (T6 temper) magnesium-aluminum alloys can be subject to stress-corrosion cracking when the part is stressed...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
1