Skip Nav Destination
Close Modal
Search Results for
glide plane
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50
Search Results for glide plane
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Crystalline Imperfections—Problems and Solutions
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion. dislocation mobility edge dislocations glide plane grain boundaries miscibility pinning...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Image
Edge dislocations of opposite sign (shown by ┴ shaped symbol) moving along ...
Available to PurchasePublished: 01 March 2006
Fig. 10.19 Edge dislocations of opposite sign (shown by ┴ shaped symbol) moving along glide planes to condense and increase size of nucleus ( N ). Source: Ref 10.6
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Image
Pencil glide. Slip takes place along different planes in one direction, giv...
Available to Purchase
in Lattice Structure and Deformation Mechanisms in Metallic Single Crystals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. A1.15 Pencil glide. Slip takes place along different planes in one direction, giving the appearance of a pencil-like surface. Source: Ref A1.4
More
Book Chapter
Twinning-Induced Plasticity Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700135
EISBN: 978-1-62708-279-2
... planes. A stacking fault causes a change in the energy field around it, called stacking fault energy (SFE), in units of mJ/m –2 . Stacking fault energy changes with alloy composition and deformation temperature and its magnitude controls the ease of dislocation glide and the activation of deformation...
Abstract
This chapter briefly discusses the characteristics of mechanical twins and stacking faults in close-packed planes. It provides an overview of the composition, microstructures, thermodynamics, processing, deformation mechanism, mechanical properties, formability, and special attributes of twinning-induced plasticity steels.
Book Chapter
Twinning-Induced Plasticity Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410147
EISBN: 978-1-62708-482-6
... that are, structurally, mirror images of each other. Twins can be produced by deformation in body-centered cubic and hexagonal close-packed metals, called mechanical twins, and by annealing following deformation in face-centered cubic metals, called annealing twins. Figure 9.1(a) shows the twin plane...
Abstract
This chapter presents an overview on the twins and stacking faults. It then provides an overview of the compositions, microstructures, thermodynamics, processing, deformation mechanism, mechanical properties, formability, and special attributes of twinning-induced plasticity steels.
Image
Schematic drawing of a crack mechanism that proceeds by tunnel formation. T...
Available to PurchasePublished: 01 July 2000
surfaces. (B) A high stress acts across the plane of tunnel formation. Fracture of the tunnel walls occurs while they are relatively thick. In addition, glide processes are initiated on the grain under the action of the stress, and selective attack occurs where the emergent slip planes intersect
More
Book Chapter
Steel Fundamentals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410031
EISBN: 978-1-62708-482-6
... of metals and alloys depend largely on the presence of such defects. Deformation by Dislocation Glide Dislocations are simply extra half-planes in metal crystals. They are basic to understanding the mechanical behavior of metals, and it is assumed that the concept of dislocations is clear...
Abstract
This chapter discusses steel’s compositions, metallurgical phases, microstructures, and heat treatments. It then presents the structure-property relationships of steel. The chapter describes the deformation and strengthening mechanisms of steel. It also presents an overview of deformation processing and annealing.
Book Chapter
Crystalline Imperfections and Plastic Deformation
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240017
EISBN: 978-1-62708-251-8
... that dislocations on that slip plane slip or glide. If the normal, n , of the slip plane lies at an angle, ϕ, to the tensile axis, its area will be A /cos ϕ. Similarly, if the slip plane lies at an angle, λ, to the tensile axis, the component of the axial force, P , acting on the slip direction will be P cos λ...
Abstract
In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion on the causes, nature, and impact of these defects in metals. It also describes the mechanisms that cause plastic deformation in metals.
Book Chapter
Steel Fundamentals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700023
EISBN: 978-1-62708-279-2
... and the distorted lattice is resistant to dislocation glide and hence increases its strength and hardness. Transformation to martensite occurs at temperatures below 250 °C, and the percentage of transformation depends only on the temperature to which it is cooled. Transformation to martensite occurs...
Abstract
This chapter discusses the compositions, metallurgical phases, microstructure, heat treatment, grades, and structure-property relationships of steels. In addition, it describes the mechanisms involved in deformation, strengthening, and annealing of steels.
Book Chapter
Review of Metallic Structure
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420363
EISBN: 978-1-62708-310-2
... Abstract This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms...
Abstract
This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms, crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure.
Book Chapter
Lattice Structure and Deformation Mechanisms in Metallic Single Crystals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540357
EISBN: 978-1-62708-309-6
... (orthogonal) {112} planes and 24 unique {123} planes, which each has one possible slip direction. An example is shown in Fig. A1.14(b) (right). Thus, there are a total of 48 possible slip systems ( Table A1.4 ) in a bcc lattice from the glide of dislocations with a Burgers vector of type 1/2 in the (111...
Abstract
Deformation within a crystal lattice is governed principally by the presence of dislocations, which are two-dimensional defects in the lattice structure. Slip from shear stress is the most common deformation mechanism within crystalline lattices of metallic materials, although deformation of crystal lattices can also occur by other processes such as twinning and, in special circumstances, by the migration of vacant lattice sites. This appendix describes the notation used to specify lattice planes and directions and discusses the mechanisms of slip and twinning as well as the effect of stacking faults.
Book Chapter
Creep
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240265
EISBN: 978-1-62708-251-8
.... Having climbed, the dislocation proceeds along the new slip plane until it encounters another resistant obstacle, whereupon it climbs (or descends) to another parallel plane and the process repeats. Since dislocation motion depends on both dislocation glide and climb, the term climb-glide creep is used...
Abstract
Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. This chapter begins with a section on creep curves, covering the three distinct stages: primary, secondary, and tertiary. It then provides information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction and the approaches to design against creep.
Book Chapter
Crystal Structure Defects and Imperfections
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
..., and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Book Chapter
Dual-Phase Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700095
EISBN: 978-1-62708-279-2
...: Adapted from Ref 5.5 Deformation Mechanism of Dual-Phase Steels Dual-phase steels deform solely by dislocation glide, which occurs mainly in the soft ferrite matrix. The hard martensite islands obstruct dislocation glide and cause an increase in the stress level. The soft ferrite phase...
Abstract
Dual-phase (DP) steels have the widest usage in automotive industry because of their excellent combination of strength and ductility. This chapter provides an overview of the composition, microstructure, processing, deformation mechanism, mechanical properties, formability, and special attributes of DP steels.
Book Chapter
Dual-Phase Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410105
EISBN: 978-1-62708-482-6
... steel. F, ferrite; B, bainite; P, pearlite; M, martensite. Adapted from Ref 5.6 5.3 Deformation Mechanism of Dual-Phase Steels Dual-phase steels deform solely by dislocation glide that occurs mainly in the soft ferrite matrix. The hard martensite islands obstruct dislocation glide and cause...
Abstract
Dual-phase (DP) steels have the widest usage in the automotive industry because of their excellent combination of strength and ductility. This chapter presents the composition, microstructure, mechanical properties, formability, and attributes of DP steels. It also discusses the basic approaches for the commercial production of DP steels.
Book Chapter
Deformation and Fracture Mechanisms and Static Strength of Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... or intergranular fracture) or from geometric conditions (notches, cracks, section size) that constrain deformation and thereby induce plane-strain crack growth under tension. These various mechanisms are described in section 2.4 . Fracture by glide is a ductile-type fracture from deformation along a shear...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860237
EISBN: 978-1-62708-348-5
... in any plastic region is called the strain-hardening coefficient. The reason for the low strain-hardening coefficient in stage I, according to Dieter (1961) , is that the moving dislocations traverse the slip plane to the crystal surface and escape. During easy glide, slip always occurs on only one slip...
Abstract
The mechanical properties of a material describe the relations between the stresses acting on the material and its resulting deformations. Stresses capable of producing permanent deformations, which remain after the stresses are removed, are considered in this chapter. The effects of cryogenic temperatures on the mechanical properties of metals and alloys are reviewed in this chapter; the effects on polymers and glasses are discussed briefly. The fundamental mechanisms controlling temperature-dependent mechanical behavior, phenomena encountered in low-temperature testing, and the mechanical properties of some representative engineering metals and alloys are described. Modifications of test procedures for low temperatures and sources of data are also included.
Book Chapter
Attributes of Advanced High-Strength Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700071
EISBN: 978-1-62708-279-2
... in metals is related to dislocation glide through crystal lattices. In pure metals strength is determined by an intrinsic lattice resistance to dislocation glide. Lattice imperfections, such as dislocations, twins, solid solutions, impurities, precipitates, and grain boundaries provide obstacles...
Abstract
This chapter summarizes the performance attributes of advanced high-strength steels, namely stiffness, strength, strain hardening, fatigue, crashworthiness, formability, toughness, and bake hardening.
Book Chapter
Attributes of Advanced High-Strength Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410081
EISBN: 978-1-62708-482-6
...-strain curve. Strength in metals is related to dislocation glide through crystal lattices. In pure metals, strength is determined by an intrinsic lattice resistance to dislocation glide. Lattice imperfections, such as dislocations, twins, solid solutions, impurities, precipitates, and grain...
Abstract
The performance attributes of advanced high-strength steels are summarized in this chapter. These attributes include stiffness, strength, strain hardening, fatigue, crashworthiness, formability, toughness, and bake hardening.
1