Skip Nav Destination
Close Modal
Search Results for
glass
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 110 Search Results for
glass
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420263
EISBN: 978-1-62708-310-2
... industry. It also provides examples showing how CALPHAD has been used to determine the formability of metallic glass, calculate the dilation of stainless steel during phase transformation, and predict the beta transus and approach curves of commercial titanium alloys. CALPHAD approach Gibbs energy...
Abstract
This chapter provides an overview of a computational method, called CALPHAD, used for the study of phase equilibria in multicomponent systems. It describes the thermodynamic models and calculation techniques employed in the software and explains how it applies to complex alloys used in industry. It also provides examples showing how CALPHAD has been used to determine the formability of metallic glass, calculate the dilation of stainless steel during phase transformation, and predict the beta transus and approach curves of commercial titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870031
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as...
Abstract
This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as physical and mechanical property data for commercially important high-strength fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... Abstract This chapter examines the static, fatigue, and damage tolerance properties of glass, aramid, and carbon fiber systems. It also explains how delaminations, voids, porosity, fiber distortion, and fastener hole defects affect impact resistance and strength. aramid fibers carbon...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
... polymers, as shown for the epoxy and nylon matrices in Table 10.1 . Table 10.1 Glass-filled epoxy and nylon strength and stiffness Property Unfilled epoxy Glass-filled epoxy, 35% Unfilled nylon Glass-filled nylon, 35% Glass-filled nylon, 60% Density, g/cc 1.25 1.90 1.15 1.62...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
... fibers have greater flexibility and are more amenable to fabrication processes such as weaving or forming over radii. Typical fibers include glass, aramid, and carbon, which may be continuous or discontinuous. Fig. 8.2 Typical reinforcement options. Source: Ref 8.1 The continuous phase is...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170587
EISBN: 978-1-62708-297-6
... strip Glass-to-metal seals Thermostatic strip Vessels and piping for storage and transportation of liquefied natural gas Superconducting systems in power transmissions Integrated-circuit lead frames Components for radios and other electronic devices Structural components in optical...
Abstract
This article discusses the role of alloying in the production and use of low-expansion alloys such as iron-nickel (Invar), iron-nickel-chromium (Elinvar), and iron-nickel-cobalt (Super-Invar and Kovar). It explains how the coefficient of thermal expansion varies with nickel content and how it can be tailored, along with other properties, through appropriate alloying adjustments. The article also discusses the effect of alloying on Incoloy and Pyromet, which are classified as high-strength, controlled-expansion alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... material temperature limits. Carbon-carbon (C-C), carbon fiber reinforced plastic (CFRP), ceramic matrix composite (CMC), carbon-silicon carbide (C-SiC), glass-ceramic matrix composite (GCMC), metal matrix composite (MMC), silicon-aluminum-oxygen-nitrogen (SIALON) While reinforcements such as fibers...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110391
EISBN: 978-1-62708-247-1
... of diamond pastes/suspensions Alumina suspension (5μm, 1μm, 0.5μm) Co-silica (0.05μm) Glass slides and cover slips Scriber to cut slides Tweezers Small rubber squeegee to apply lapping films Potting epoxies Molds for epoxies Allied High Tech EpoxyBond 110™ (Allied High Tech...
Abstract
Cross-sectioning is a technique used for process development and reverse engineering. This article introduces novice analysts to the methods of cross-sectioning semiconductor devices and provides a refresher for the more experienced analysts. Topics covered include encapsulated (potted) device sectioning techniques, non-encapsulated device techniques, utilization of the focused ion beam (FIB) making a cross-section and/or enhancing a physically polished one. Delineation methods for revealing structures are also discussed. These can be chemical etchants, chemo-mechanical polishing, and ion milling, either in the FIB or in a dedicated ion mill.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
..., polyesters, vinyl esters, and bismaleimides, are generally much easier to process with low void levels. An important consideration in selecting any plastic (thermoset or thermoplastic) is the glass transition temperature. The glass transition temperature ( T g ) is a good indicator of the temperature...
Abstract
This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress. The chapter also includes a section on the uses of thermoplastic and thermosetting resins and provides information on fabrication processes and fastening and joining methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110545
EISBN: 978-1-62708-247-1
... assembled into an array. Failure analysis techniques of full modules need to be general enough to adapt to all forms of modules. Crystalline or polycrystalline Si panels use multiple cells assembled onto a glass superstrate to form a module. Thin film photovoltaic materials including amorphous Si, CdTe, Cu...
Abstract
Post-mortem analysis of photovoltaic modules that have degraded performance is essential for improving the long term durability of solar energy. This article focuses on a general procedure for analyzing a failed module. The procedure includes electrical characterization followed by thermal imaging such as forward bias, reverse bias, and lock-in, and emission imaging such as electroluminescence and photoluminescence imaging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870255
EISBN: 978-1-62708-314-0
..., electrical, insulation, and/or energy absorption characteristics. Fig. 9.1 Why sandwich structures are so efficient. Source: Ref 1 Fig. 9.2 Efficiency of the sandwich structure. Source: Ref 1 Commonly used facesheet materials are aluminum, glass, carbon, and aramid. A typical...
Abstract
This chapter discusses the advantages and disadvantages of sandwich and integral cocured structures, and the methods by which they are made. It begins by explaining where and how sandwich construction is used and why it is so efficient. It then describes the design and fabrication of honeycomb panels and foam cores along with their respective applications and unique attributes. The chapter also discusses the cocuring process and its use in fabricating unitized structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... the fibers provide the strength and stiffness, it is appropriate to consider fiber selection first. Glass fibers are the most widely used reinforcement because of their good balance of mechanical properties and low cost. E-glass is the most common glass fiber and is used extensively in commercial...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... Aluminum 177 5.6 Rubber 134.5 4.3 Glass 88.5 2.8 Copper/electrical equivalent 43.5 1.4 Powder metal 26 0.8 Lead 24 0.8 Zinc die castings 16 0.5 Other materials 68.5 2.2 Fluids/lubricants 188.5 6.0 Total 3149.5 100 Note: HSLA, high-strength, low...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... carbon-base materials are stable to temperatures approaching 3000 °C (5430 °F). Fig. 11.4 Relative material temperature limits. CFRP, carbon fiber-reinforced plastic; GMC, glass-matrix composite; MMC, metal-matrix composite; GCMC, glass-ceramic-matrix composite; CMC, ceramic-matrix composite; C-C...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870001
EISBN: 978-1-62708-314-0
... addition, smaller-diameter high-strength fibers have greater flexibility and are more amenable to fabrication processes such as weaving or forming over radii. Typical fibers include glass, aramid, and carbon, which may be continuous or discontinuous. Fig. 1.1 Typical reinforcement types The...
Abstract
This chapter covers the basic aspects of composite materials. It describes the arrangement, form, and function of their constituent materials and explains how they perform better in combination than on their own. It discusses the directional nature of isotropic, anisotropic, and orthotropic materials, the orientation of plies in unidirectional (lamina) and quasi-isotropic (laminate) lay-ups, and the dominant role of fibers in determining strength, stiffness, and other lamina properties. The chapter also compares the engineering attributes of composites with those of metals and includes application examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110042
EISBN: 978-1-62708-247-1
... vacuum at approximately 3x10 8 meters/second and nearly the same speed in air. Light travels more slowly in other materials such as glass or water. Light travels approximately 50% more slowly in glass than in air. If the air/glass interface is bent or curved a plane wave will strike and slow on one...
Abstract
Moore's Law has driven many degree circuit features below the resolving capability of optical microscopy. Yet the optical microscope remains a valuable tool in failure analysis. This article describes the physics governing resolution and useful techniques for extracting the small details. It begins with the basic microscope column and construction. The article discusses microscope adjustments, brightfield and darkfield illumination, and microscope concepts important to liquid crystal techniques. It also discusses solid immersion lenses, infrared and ultraviolet microscopy and concludes with laser microscopy techniques such as thermal induced voltage alteration and external induced voltage alteration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870401
EISBN: 978-1-62708-314-0
... matrix absorbs moisture from the atmosphere, it reduces the glass transition temperature T g in the manner shown for the carbon/epoxy and carbon/bismaleimide composites in Fig. 15.2 . As moisture is absorbed, the temperature at which the matrix changes from a glassy solid to a softer, more viscous...
Abstract
This chapter describes the conditions under which environmental degradation is likely to occur in polymer matrix composites and the potential damage it can cause. It discusses the problems associated with moisture absorption and exposure to solvents, fuels, ultraviolet radiation, lightning strikes, thermal oxidation, and extreme temperatures. It also discusses the factors that influence flammability.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
... cure temperatures and long cure times give the highest glass transition temperatures, T g . When these are combined with high functionality (for example, four reactive end groups), the highest possible crosslink densities are achieved, which yield strong, stiff, but somewhat brittle structures. The...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.