Skip Nav Destination
Close Modal
Search Results for
gear design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 377 Search Results for
gear design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320185
EISBN: 978-1-62708-347-8
... Abstract The successful design and manufacture of gears are influenced largely by design requirements, material selection, and proper heat treatment. This chapter addresses the cost factors and tradeoffs involved in selecting a material, design features, and a heat treating process to optimize...
Abstract
The successful design and manufacture of gears are influenced largely by design requirements, material selection, and proper heat treatment. This chapter addresses the cost factors and tradeoffs involved in selecting a material, design features, and a heat treating process to optimize gear performance for a particular application.
Image
Published: 01 December 1999
Fig. 3 Theoretically a “safe” gear design can accommodate the presence of an adverse metallurgical feature; however, there may be other adverse factors involved that also erode the difference between the fracture stress and the allowable stress.
More
Image
Published: 01 September 2005
Image
Published: 01 September 2008
Fig. 3 Two gear designs showing the effect of coefficient of thermal expansion. At left is a widely used design, which is very troublesome to heat-treat. A preferred design is shown at right. Source: Ref 11
More
Image
Published: 01 January 2022
Image
Published: 01 September 2005
Fig. 41 Effect of blank design on hardness. (a) Typical webbed gear tooth. (b) Surface hardness vs. case depth at different locations of a tooth along the face width
More
Image
Published: 01 January 2022
Image
Published: 01 January 2022
Image
in Development of an Epicyclic Gearbox for Reduced Vibration
> Gearbox Vibrations: Analysis and Reduction
Published: 31 March 2024
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
... Abstract This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320017
EISBN: 978-1-62708-347-8
... attainable hardness of quenched steels to carbon content. Courtesy Darle W. Dudley, Handbook of Practical Gear Design , Technomic Publishing Company, Inc., 1994 Major Heat Treat Processes A great majority of industrial, automotive, and aerospace gears are heat treated by one of the following...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320001
EISBN: 978-1-62708-347-8
... properties of the gears and the subsequent failure modes of the gears. In addition to hardness and acceptable case/core microstructures, a gear design engineer expects gears to maintain pre-heat-treat tooth geometry after heat treatment, if possible. This allows gears to be finished with such minor...
Abstract
Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels are preferred because of higher hardenability and the desired microstructures of the hardened case and core needed for the high fatigue strength of gears. This chapter provides an overview of the key considerations involved in the selection and application of heat treating processes for alloy steel gears and serves as an introduction to the subsequent chapters in this book.
Image
Published: 01 December 1999
Fig. 8.14 Comparison of bending fatigue strength of conventionally processed (cut/harden/lap) versus CBN ground (cut/harden/lap) spiral bevel gears. Test gear design specifications: hypoid design, 4.286 dp, 11 by 45 ratio, 1.60 in. face. Gears were installed in axles using a 4-square loaded
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770001
EISBN: 978-1-62708-337-9
... and loaded not to fail. The basic allowable stresses used by gear designers have been conservative in order to acknowledge that design procedures are not precise enough to cater to the very wide range of gear designs, and that material variability and process variability do exist. These basic allowable...
Abstract
This chapter provides a brief but practical overview of the case carburizing process. It discusses the benefits and challenges of the process and compares and contrasts it with other hardening methods. It explains how design allowables and safety factors compensate for unknowns and familiarizes readers with the steps involved in determining case depth and verifying that case carbon requirements have been met.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250139
EISBN: 978-1-62708-345-4
..., process advantages, forms, tolerances, design, tooling, performance, quality control, and inspection of P/M gear manufacture. In addition, it presents examples that illustrate the versatility of the P/M process for gear manufacture. bevel gears face gears gears helical gears powder metallurgy...
Abstract
Powder metallurgy (P/M) is a flexible metalworking process for the production of gears. The P/M process is capable of producing close tolerance gears with strengths to 1240 MPa at economical prices in higher volume quantities. This chapter discusses the capabilities, limitations, process advantages, forms, tolerances, design, tooling, performance, quality control, and inspection of P/M gear manufacture. In addition, it presents examples that illustrate the versatility of the P/M process for gear manufacture.
Image
in Carburizing and Hardening Gears
> Heat Treatment of Gears<subtitle>A Practical Guide for Engineers</subtitle>
Published: 01 December 2000
Fig. 5.6 Some typical Jominy curves showing end-quench hardenability. Courtesy: Darle Dudley, Handbook of Practical Gear Design , Technomic Publishing Co., Inc.
More
Image
in Heat Treatment of Gears
> Heat Treatment of Gears<subtitle>A Practical Guide for Engineers</subtitle>
Published: 01 December 2000
Fig. 3.1 Relation of maximum attainable hardness of quenched steels to carbon content. Courtesy Darle W. Dudley, Handbook of Practical Gear Design , Technomic Publishing Company, Inc., 1994
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320021
EISBN: 978-1-62708-347-8
... are primarily used for through-hardened gears: annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter begins with a discussion of these through-hardening processes. This is followed by sections providing some factors affecting the design and hardness levels...
Abstract
Through-hardening heat treatment is generally used for gears that do not require high surface hardness. In through hardening, gears are first heated to a required temperature and then cooled either in the furnace or quenched in air, gas, or liquid. Four heat treatment methods are primarily used for through-hardened gears: annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter begins with a discussion of these through-hardening processes. This is followed by sections providing some factors affecting the design and hardness levels of through-hardened gears. Next, the chapter reviews the considerations related to distortion of through-hardened gears. It then discusses the applications of through-hardened gears. Finally, the chapter presents a case history of the design and manufacture of a through-hardened gear rack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250155
EISBN: 978-1-62708-345-4
..., normalizing and tempering, and quenching and tempering. This chapter discusses the processes involved in the through-hardening of gears. It provides information on designing procedures, hardness, distortion, and applications of the through-hardened gears. The chapter presents a case history on the design...
Abstract
The through-hardening process is generally used for gears that do not require high surface hardness. Four different methods of heat treatment are primarily used for through-hardened gears. In ascending order of achievable hardness, these methods are annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter discusses the processes involved in the through-hardening of gears. It provides information on designing procedures, hardness, distortion, and applications of the through-hardened gears. The chapter presents a case history on the design and manufacture of a through-hardened gear rack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
... of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
1