1-20 of 142 Search Results for

gas-shielded arc welding

Sort by
Image
Published: 01 November 2011
Fig. 2.4 Gas shielded flux cored arc welding. Source: Ref 2.3 More
Image
Published: 01 December 2006
Fig. 37 Effect of gas tungsten arc weld shielding gas composition on the corrosion resistance of two austenitic stainless steels. Welded strip samples were tested according to ASTM G 48; test temperature was 35 °C (95 °F). Source: Ref 19 More
Image
Published: 01 December 2000
Fig. 9.9 Setup for inert gas shielding for gas-tungsten arc welding of titanium alloys outside a welding chamber. Gas shielding is from the torch and through ports in hold-down bars, backing bars, and from trailing and backup shields. More
Image
Published: 01 December 2015
Fig. 21 Effect of gas tungsten arc weld shielding gas composition on the corrosion resistance of two austenitic stainless steels. Welded strip samples were tested according to ASTM G48; test temperature was 35 °C (95 °F). Source: Ref 8 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930179
EISBN: 978-1-62708-359-1
..., all of the common welding processes can be used for repair welding: Shielded metal arc welding (SMAW) Gas-metal arc welding (GMAW) Gas-tungsten arc welding (GTAW) Submerged arc welding (SAW) Plasma arc welding (PAW) For the highest-quality welds, the GTAW and PAW processes find...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930283
EISBN: 978-1-62708-359-1
... temperature (higher than 65 °C, or 150 °F) may limit choice of filler metals. Filler alloys 5356, 5183, 5556, and 5654 are not recommended for sustained elevated-temperature service. (2) Recommendations in this table apply to gas-shielded arc welding processes. For gas welding, only 1100, 1188, and 4043...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290023
EISBN: 978-1-62708-306-5
... welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-GMAW welding, electroslag welding, and electrogas welding. The basic characteristics of gases used for shielding during arc welding are briefly discussed. electrogas welding electroslag welding flux cored arc...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... and solid-state processes, although titanium’s chemical reactivity typically requires special procedures and precautions. In the United States, fusion welding of titanium is performed principally by inert gas-shielded arc welding and high-energy-beam welding processes. To date, the commercial joining...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200369
EISBN: 978-1-62708-354-6
... and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... be taken to shield the weld and hot root side of the joint from air. EBW involves an evacuated chamber to permit electrons to be generated and delivered to the workpiece or it involves inert gas shielding of the workpiece in nonvacuum EBW. Arc welding fusion processes such as GTAW may involve a chamber...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480265
EISBN: 978-1-62708-318-8
... special techniques to shield weld Gas metal arc Requires special techniques to shield weld Plasma arc Must use inert gas Electron beam Hard vacuum excellent Resistance spot and seam Excellent Flash Excellent Diffusion Excellent Pressure Excellent Friction stir welding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030096
EISBN: 978-1-62708-282-2
... in austenitic stainless steels as well as several forms of corrosion associated with welding. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are then covered. Microbiological corrosion of butt welds in water tanks is also illustrated. In addition...
Image
Published: 01 March 2001
Fig. 2 Relative costs (based on pounds of alloy deposited) for various weld overlay and thermal spray processes. SAW, submerged arc welding; FCAW, flux-cored arc welding; GMAW, gas metal arc welding; SMAW, shielded metal arc welding; OAW, oxyacetylene gas welding; FLSP, flame spraying; PSP More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930353
EISBN: 978-1-62708-359-1
...) increases ( Ref 7 ). These metallurgical characteristics of molybdenum and tungsten preclude the use of any arc welding process that affords less protection to the hot metal than does the gas tungsten arc process with the inert gas shield. The effects of these characteristics on weldment ductility may...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310201
EISBN: 978-1-62708-286-0
... arc stability at higher currents. If consumable electrodes are used, the shielding gas precludes the need for coatings. The weld metal alloys are not necessarily the same as the parent alloys but are chosen based on their ability as weld metals to provide the most acceptable corrosion and mechanical...
Image
Published: 01 July 1997
Fig. 18 Comparison of J c values for heat-affected zone (HAZ), weld fusion zone (W), and base metal (BM). Values of kJ/da , in MPa, are provided beyond each bar. Cracks are oriented parallel to the welding direction. SA, submerged arc; GTA, gas-tungsten arc; SMA, shielded-metal arc; GMA More
Image
Published: 01 July 1997
Fig. 16 Effect of test temperature on J c for types 304/308 and 316/16-8-2 welds. J c values for the same weld are connected by a line. GTA, gas-tungsten arc; SMA, shielded-metal arc; SA, submerged arc. A dash or asterisk represents either another welding process or a weld where More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930197
EISBN: 978-1-62708-359-1
... produced in arc welds can be grouped into three types: isolated, linear, and cluster. Isolated porosity is caused by a phenomenon similar to boiling when the arc power is too far above the ideal level. Linear or cluster porosity can result from interaction of components of the shielding gas, such as oxygen...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200158
EISBN: 978-1-62708-354-6
... are reviewed here for cast-weld construction. The welding engineer has several processes that can be considered. These include: 1. Shielded Metal-Arc Welding (SMAW) 2. Submerged Arc Welding (SAW) 3. Gas Metal-Arc Welding (GMAW) 4. Gas Tungsten-Arc Welding (GTAW) 5. Electroslag Welding (ESW) The rate of welding...
Image
Published: 01 July 1997
Fig. 14 Charpy impact energy vs. test temperature for type 308 welds showing the ductile-brittle transition temperature phenomena. SMA, shielded-metal arc; SA, submerged arc; GTA, gas-tungsten arc. Half-size Charpy specimens (5 × 5 × 25.4 mm with a 0.76 mm notch) were used to characterize More