Skip Nav Destination
Close Modal
Search Results for
gas atomization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 553 Search Results for
gas atomization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Manufacture and Characteristics of Stainless Steel Powders
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 3.11 Schematic of inert gas atomization system with expanded view of the gas expansion nozzle. Source: Ref 27 . Reprinted with permission from MPIF, Metal Powder Industries Federation, Princeton, NJ
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.40 (a) Gas atomization setup. (b) Scanning electron micrograph of a gas-atomized prealloyed spherical Ti-6Al-4V. Courtesy of Affinity International
More
Image
Published: 01 March 2002
Image
Published: 01 March 2002
Image
Published: 01 December 2006
Image
Published: 30 April 2020
Fig. 2.20 High-alloy and pure powders are fabricated by using gas atomization. The highest-purity powders rely on vacuum melting and inert gas atomization, as illustrated in this cross section. The resulting particles are spherical microcastings.
More
Image
Published: 01 January 1998
Image
in Powder Production Methods
> Powder Metallurgy and Additive Manufacturing: Fundamentals and Advancements
Published: 30 September 2024
Image
in Powder Production Techniques for High-Pressure Cold Spray
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 6.1 Inert gas atomizer for induction heating with ceramic or graphite crucible. Courtesy of Impact Innovations GmbH
More
Image
Published: 01 March 2002
Image
in Manufacture and Characteristics of Stainless Steel Powders
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Image
Published: 30 April 2020
Fig. 2.21 Scanning electron micrograph of gas-atomized alloy powder showing some splats and a few adherent small satellites but generally spherical particles
More
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.11 Sintered density for two different carbon levels using a gas-atomized 11 μm powder. Hold time at each temperature was 100 min.
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 5 SEM of a gas atomized 316L powder having the typical spherical particle shape. Such powders are used in MIM and in hot isostatic compaction. Source: Courtesy of Roberto Garcia, N.C. State University
More
Image
in Powder Production Methods
> Powder Metallurgy and Additive Manufacturing: Fundamentals and Advancements
Published: 30 September 2024
Image
in How Does Powder Metallurgy Facilitate the Preparation of Intermetallics and High-Entropy Alloys?
> Powder Metallurgy and Additive Manufacturing: Fundamentals and Advancements
Published: 30 September 2024
Fig. 9.5 (a) Backscattered electron image of gas-atomized CoCrFeMnNi high-entropy alloy (HEA) powder. (b) Corresponding elemental mapping. (c) Pictures of the sample at different processing stages of consolidation. (d) Cross-sectional view of high-pressure torsion (HPT) consolidated disk. (e
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000023
EISBN: 978-1-62708-312-6
... Abstract Stainless steel powders are usually made by water or gas atomization. This chapter describes both processes and the properties and characteristics of the powders they produce. It also discusses secondary processes, including drying, screening, annealing, and lubricating...
Abstract
Stainless steel powders are usually made by water or gas atomization. This chapter describes both processes and the properties and characteristics of the powders they produce. It also discusses secondary processes, including drying, screening, annealing, and lubricating, and the effects of iron contamination on corrosion resistance.
Image
Published: 01 October 2011
Fig. 5.30 Two-fluid atomization with (a) free-fall design (gas or water) and (b) continued nozzle design (gas only). Design characteristics: a, angle formed by free-falling molten metal and atomizing medium; A , distance between molten metal and nozzle; D , diameter of confined molten metal
More
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400009
EISBN: 978-1-62708-479-6
... Abstract This chapter provides a qualitative overview of powder preparation technologies including milling, mechanical alloying, electrolytic dissolution, metal oxide reduction, solid-state reactive synthesis, and gas, water, and centrifugal atomization. It discusses the general implementation...
Abstract
This chapter provides a qualitative overview of powder preparation technologies including milling, mechanical alloying, electrolytic dissolution, metal oxide reduction, solid-state reactive synthesis, and gas, water, and centrifugal atomization. It discusses the general implementation of each process, the materials for which they are used, and the powder characteristics that can be achieved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
... to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
1