Skip Nav Destination
Close Modal
Search Results for
fracture toughness test method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 445
Search Results for fracture toughness test method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fracture Mechanics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610101
EISBN: 978-1-62708-303-4
... with the steps involved in determining strain energy release rates, stress intensity factors, J-integrals, R-curves, and crack tip opening displacement parameters. It also covers fracture toughness testing methods and the effect of measurement variables. crack tip opening displacement elastic-plastic...
Abstract
Fracture mechanics is the science of predicting the load-carrying capabilities of cracked structures based on a mathematical description of the stress field surrounding the crack. The fundamental ideas stem from the work of Griffith, who demonstrated that the strain energy released upon crack extension is the driving force for fracture in a cracked material under load. This chapter provides a summary of Griffith’s work and the subsequent development of linear elastic and elastic-plastic fracture mechanics. It includes detailed illustrations and examples, familiarizing readers with the steps involved in determining strain energy release rates, stress intensity factors, J-integrals, R-curves, and crack tip opening displacement parameters. It also covers fracture toughness testing methods and the effect of measurement variables.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860269
EISBN: 978-1-62708-348-5
... Ic and K Ic ( J ) may be clarified by consideration of their test methods. 8.4.1 Linear Elastic Fracture Toughness A standard test method, ASTM E 399 ( Annual Book of ASTM Standards , 1981b), is used to measure plane strain fracture toughness, K Ic . The standard is designed...
Abstract
This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.
Book Chapter
Fracture Resistance Testing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780211
EISBN: 978-1-62708-281-5
... Abstract This article briefly describes the historical development of fracture resistance testing of polymers and reviews several test methods developed for determining the fracture toughness of polymeric materials. The discussion covers J-integral testing, the methods for determining linear...
Abstract
This article briefly describes the historical development of fracture resistance testing of polymers and reviews several test methods developed for determining the fracture toughness of polymeric materials. The discussion covers J-integral testing, the methods for determining linear elastic fracture toughness, testing of thin sheets and films, normalization methods, and hysteresis methods.
Book Chapter
Fracture Mechanics and Service Fitness of Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
... interpretation of the meaning of this scatter. One of the things that has slowed progress in the application of fracture mechanics to weldments in the U.S. is the lack of a standard test procedure. Although it was assumed that the general fracture toughness test methods could apply to weldments as well...
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930113
EISBN: 978-1-62708-359-1
... toughness to avoid unstable fractures. Fig. 19 Example of brittle fracture in ship structures The Charpy test evaluates both the initiation of brittle fracture as well as its subsequent propagation. The significance attached to controlling fracture initiation or propagation has influenced...
Abstract
This article discusses the various options for controlling fatigue and fracture in welded steel structures, the factors that influence them the most, and some of the leading codes and standards for designing against these failure mechanisms. The two most widely used approaches discussed for fatigue control in welded joints are the S-N curve approach and the fracture mechanics assessment methods.
Book Chapter
Static and Dynamic Fracture Toughness of Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540169
EISBN: 978-1-62708-309-6
... of the load-displacement curve until the area under the linear portion equals the area to the maximum load of the test. Then a fracture toughness value, K-EE , is recalculated by using P E . In addition to reinterpreting E 399 test results, this method can be used to run tests using subsize specimens...
Abstract
This chapter discusses various types of material fracture toughness and the methods by which they are determined. It begins with a review of the basic principles of linear elastic fracture mechanics, covering the Griffith-Irwin theory of fracture, the concept of strain energy release rate, the use of fracture indices and failure criteria, and the ramifications of crack-tip plasticity in ductile and brittle fractures. It goes on to describe the different types of plain-strain and plane-stress fracture toughness, explaining how they are measured and how they are influenced by metallurgical and environmental variables and loading conditions. It also examines the crack growth resistance curves of several aluminum alloys and describes the characteristics of fracture when all or some of the applied load is in the plane of the crack.
Book Chapter
Fracture Mechanics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
....) The investigation of these brittle fractures led to new methods to evaluate notch toughness. What engineers needed was a toughness measure that could be determined using a simple laboratory test and could be used in a quantitative way to predict the flaw size at which fracture would occur in components containing...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Crack Mechanics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870201
EISBN: 978-1-62708-344-7
... stresses are in the tensile test. Therefore, if the material displays ductility in the tension test, it will also tear at the crack tip when such cracks are present. Thus, ductile tearing is the common failure mode in this structure and plane-stress fracture toughness has little meaning for materials other...
Abstract
This chapter provides a quantitative treatment of the cracking mechanisms associated with fatigue, drawing on the principles of fracture mechanics. It explains that although fracture mechanics originated with the aim of understanding sudden and catastrophic crack extension, the main premise of a stress field in the vicinity of the crack also applies to the study of cycle-by-cycle stable crack growth. A detailed review is given of the many developments and discoveries that helped shape the theory and methods collectively defined as crack mechanics, which the authors then employ to analyze the crack growth behavior of various materials, including steels and nonferrous alloys, under constant-amplitude loading. The authors then deal with the effects of complex loading using crack retardation and crack closure models to show how load fluctuations can slow crack growth rates and even cause total crack arrest. They also present the results of a study on crack initiation, propagation, and fracture in circular (rather than rectangular) specimens and a fatigue study on ductile and quasi-brittle materials.
Book Chapter
Metallic Joints: Mechanically Fastened and Welded
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610263
EISBN: 978-1-62708-303-4
... the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals. bolted joints fatigue life fracture toughness rivets welded joints FAILURE IN ENGINEERING STRUCTURES are still common today, despite the fact that modern tools for designing...
Abstract
This chapter discusses the fatigue behavior of bolted, riveted, and welded joints. It describes the relative strength of machined and rolled threads and the effect of thread design, preload, and clamping force on the fatigue strength of bolts made from different steels. It explains where fatigue failures are likely to occur in cold-driven rivet and friction joints, and why the fatigue strength of welded joints can be much lower than that of the parent metal, depending on weld shape, joint geometry, discontinuities, and residual stresses. The chapter also explains how to improve the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals.
Book Chapter
Testing and Inspection of Metals—The Quest for Quality
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060149
EISBN: 978-1-62708-261-7
... Abstract This chapter explains how metallography and hardness testing are used to evaluate the quality and condition of metal products. It also discusses the use of tensile testing, fracture toughness and impact testing, fatigue testing, and nondestructive test methods including ultrasonic, x...
Abstract
This chapter explains how metallography and hardness testing are used to evaluate the quality and condition of metal products. It also discusses the use of tensile testing, fracture toughness and impact testing, fatigue testing, and nondestructive test methods including ultrasonic, x-ray, and eddy current testing.
Book Chapter
Toughness
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490021
EISBN: 978-1-62708-340-9
... comparing Charpy results (a dynamic test) with K Ic values obtained from static tests, one should compensate for the strain-rate dependence of K Ic in some fashion. Many investigators have reported correlations between Charpy results and the dynamic fracture toughness K Id . Again, a method of translating...
Abstract
The toughness of a material is its ability to absorb energy in the form of plastic deformation without fracturing. It is thus a measure of both strength and ductility. This chapter describes the fracture and toughness characteristics of metals and their effect on component lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well as grain size, inclusion content, and impurities. It also presents the theory and use of elastic-plastic fracture mechanics and discusses the causes, effects, and control of temper embrittlement in various types of steel.
Book Chapter
Test Specimen Drawings
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140301
EISBN: 978-1-62708-335-5
... are presented in this volume. In general, the specimens as well as the test procedures conformed to the respective ASTM Standard Methods at the time the test were made, the only exceptions being the rotating beam fatigue specimens and tests for which no ASTM standards exist. Some general comments on the five...
Abstract
This appendix contains drawings that illustrate the test specimens used in generating the data related to aluminum alloy castings.
Book Chapter
Fracture Control and Damage Tolerance Analysis
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610303
EISBN: 978-1-62708-303-4
.... The chapter describes some of methods used to determine maximum permissible crack size and predict growth rates. It explains how the information can then be used to control fractures through periodic inspection, fail-safe features, mandated retirement, and proof testing. It presents a number of fracture...
Abstract
Fracture control can be defined as a concerted effort to maintain operating safety without catastrophic failure by fracture. It requires an understanding of how cracks affect structural integrity and strength and the time that a crack can grow before it exceeds permissible size. The chapter describes some of methods used to determine maximum permissible crack size and predict growth rates. It explains how the information can then be used to control fractures through periodic inspection, fail-safe features, mandated retirement, and proof testing. It presents a number of fracture control plans optimized for different circumstances, examines the damage tolerance requirements used by different industries, and discusses various approaches for fatigue design.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860371
EISBN: 978-1-62708-348-5
... of the notch ( Handbook on Materials for Superconducting Machinery , 1977 ). J -integral methods (see Chapter 8 ) have been used to measure the fracture toughness of AISI grades 310 and 316 at temperatures to 4 K. As shown in Fig. 11.7 , the toughness, K Ic ( J ), at cryogenic temperatures exceeds...
Abstract
This chapter discusses the structural alloys being used for cryogenic applications in commercially significant quantities. It emphasizes the practical considerations involved in the material selection process and provides the information necessary to make preliminary selections of alloys most suitable for the intended cryogenic application. The chapter provides general information on a class or group of alloys, their representative mechanical and physical properties, and their fabrication characteristics. The materials covered are austenitic stainless steels, nickel steels, aluminum alloys, and other metals and alloys.
Book Chapter
Mechanical Testing and Properties of Plastics: An Introduction
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780185
EISBN: 978-1-62708-281-5
... a growing indenter contact area, yielding, and large-displacement and large-strain deformation. References 13 to 15 provide more details on these events and their effects on the test data. Fracture Mechanics Another way to evaluate the toughness of materials is by fracture toughness testing...
Abstract
This article briefly introduces some commonly used methods of mechanical testing of plastics for determining mechanical properties, also describing the test methods and providing comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are briefly described. The discussion covers the most commonly used tests for impact performance, various types of hardness test for plastics, the fatigue strength of viscoelastic materials, and the tension testing of elastomers and fibers.
Book Chapter
Mechanical Behavior of Nonmetallic Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant-Stress Rate Flexural Testing at Ambient Temperature C 1421 Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature Japanese Standards Association...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Fracture
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240221
EISBN: 978-1-62708-251-8
... toughness of steels, aluminum alloys, and titanium alloys. fracture ductile fracture brittle fracture Griffith theory plane-strain fracture toughness temperature steels aluminum alloys titanium alloys notched bar impact testing microstructure FRACTURE is the separation of a solid body...
Abstract
Fracture is the separation of a solid body into two or more pieces under the action of stress. Fracture can be classified into two broad categories: ductile fracture and brittle fracture. Beginning with a comparison of these two categories, this chapter discusses the nature and causes of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions to a brittle failure. The discussion then covers the Griffith theory of brittle fracture and the formulation of fracture mechanics. Procedures for determination of the plane-strain fracture toughness are subsequently covered. Finally, the chapter describes the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Stress Corrosion Testing Methods and Standards
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090443
EISBN: 978-1-62708-266-2
... testing Specific Test Methods ASTM E399-12e3: Standard test method for linear-elastic plane-strain fracture toughness of K Ic of metallic materials (gives sample dimensions and methods utilized to obtained threshold and crack growth rate data during stress corrosion testing). ASTM E1682-02...
Abstract
ASTM and other standards organizations have developed a number of tests for evaluating stress-corrosion cracking (SCC) under various conditions. This appendix lists many of the SCC tests that have been approved for specific materials and operating environments.
Book Chapter
Mechanical Properties and Testing of Titanium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480113
EISBN: 978-1-62708-318-8
... alloys, much plastic flow attends the cracking process. Thus, plane-strain conditions do not exist. Testing under these circumstances (plane-strain) yields stress intensities termed K c . Many specimen geometries and testing methods are available to determine fracture toughness. All specimens...
Abstract
This chapter discusses the factors that govern the mechanical properties of titanium, beginning with the morphology of the alpha phase. It explains that the shape of the alpha phase has a significant effect on many properties, including hardness, tensile strength, toughness, and ductility as well as creep, fatigue strength, and fatigue crack growth rate. It also discusses the influence of other titanium phases and the properties of titanium-based intermetallic compounds, metal-matrix composites, and shape-memory alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
..., hardness, and impact or fracture toughness. Corrosion testing is often employed in situations where a welding operation is performed on a corrosion-resistant material, or in a structure exposed to a hostile environment. Although absolute corrosion performance is important, a major concern is to ensure...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
1