Skip Nav Destination
Close Modal
Search Results for
fracture surface preparation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 399 Search Results for
fracture surface preparation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270150
EISBN: 978-1-62708-301-0
... The blade had fractured at the root, with the fracture surface showing a conchoidal pattern indicating the delayed nature of fracture. The fracture had originated from the convex surface of the blade, almost from the middle portion, and progressed to about 80% of the cross section before final fracture...
Abstract
This chapter discusses the failure of a compressor blade in an aircraft engine and explains how investigators determined the cause. Based on visual examination and the results of SEM fractography and chemical analysis, it was concluded that blade failed due to fatigue fracture originating from nonmetallic inclusions in the blade root.
Image
Published: 01 August 1999
is an electrodeposit of nickel used to protect the outer edge of the scale during specimen preparation. Scanning electron micrograph. Fracture surface. 1000×.
More
Image
Published: 01 August 1999
is an electrodeposit of nickel used to protect the outer edge of the scale during specimen preparation. Scanning electron micrograph. Fracture surface. 1000×.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130351
EISBN: 978-1-62708-284-6
...) Hardness measurements were made on the roll pin to verify the heat treated condition. The hardness of the roll pin was measured to be 49 HRC, which met the hardness requirement of 46 to 55 HRC. A metallographic specimen was prepared through the fracture surface. The specimen was prepared using standard...
Abstract
This chapter presents various case histories that illustrate a variety of failure mechanisms experienced by the high-strength steel components in aerospace applications. The components covered are catapult holdback bar, AISI 420 stainless steel roll pin, main landing gear (MLG) lever, inboard flap hinge bolt, nose landing gear piston axle, multiple-leg aircraft-handling sling, aircraft hoist sling, internal spur gear, and MLG axle. In addition, the chapter provides information on full-scale fatigue testing, nondestructive testing, and failure analysis of fin attach bolts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270177
EISBN: 978-1-62708-301-0
.... However, this region on the mating surface in the gear was intact ( Fig. CH48.4 ), and no mechanical damage, such as nicks or dents, was seen at the crack origin. Fig. CH48.3 Fractured segment. Note the secondary (post-fracture) damage at the fracture origin. Fig. CH48.4 (a) and (b...
Abstract
A driven gear in the gear box of an aircraft engine fractured after a 40 h test run. The driving gear and gear shaft were also damaged. Based on the results of fractography, chemical analysis, metallography, and hardness testing, the fracture was caused by a fatigue crack initiating at the corner of the inner rim near an inclusion. The report recommends the use of a cleaner material and more carefully controlling case hardening process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090333
EISBN: 978-1-62708-266-2
... possess an extremely high corrosion resistance ( Ref 13.1 ). The mechanical behavior of amorphous alloys prepared by rapid quenching from the liquid state (by melt spinning, for example) is also remarkable. They are very strong and stiff, but tough; for example, amorphous iron-base alloys have a fracture...
Abstract
Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly passivating elements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270067
EISBN: 978-1-62708-301-0
... fracture at the leading edge of the LPTR blade Fig. CH2.4 SEM fractographs showing (a) beach marks and (b) striations in the fatigue failed region Metallography A piece from the blade close to the fracture surface was prepared for metallography and examined after etching...
Abstract
A low-pressure turbine rotor blade failed in service, causing extensive engine damage. A section of the blade broke off around 25 mm from the root platform, producing a flat fracture surface that appeared smooth on one end and grainy elsewhere. Based on their examination, investigators concluded that the nickel-base superalloy blade was exposed to high temperatures and stresses, initiating a crack that propagated under cyclic loading. This chapter provides a summary of the investigation and the insights acquired using scanning electron fractography, metallography, and hardness measurements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630001
EISBN: 978-1-62708-270-9
...) Macroscopic examination and analysis and photographic documentation (fracture surfaces, secondary cracks, and other surface phenomena) Microscopic examination and analysis using various light microscopy and electron microscopy techniques Selection and preparation of metallographic sections...
Abstract
Failure analysis is a systematic investigative procedure using the scientific method to identify the causes of a failure. This chapter begins by exploring what failure analysis is followed by a section describing the sequence of stages in the investigation and analysis of failure and the three principles that must be carefully followed during the analysis. It then provides information on the normal location of fracture and concludes with a list of questions to ask about fractures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400169
EISBN: 978-1-62708-258-7
.... This moisture would immediately create a layer of corrosion (rust) on the fracture surface. Safety While Sectioning Accidents can easily occur during sectioning of metallographic specimens. Safety glasses with side shields should always be worn in the specimen preparation room and in the field when using...
Abstract
This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting, grinding, and polishing processes, and ending with methods used to properly store metallographic specimens. The discussion covers the preparation procedures, the materials being investigated, and equipment used to perform these procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270087
EISBN: 978-1-62708-301-0
... images of the microstructure and fracture surfaces and explains what some of the details reveal about the failure. fatigue crack metallography microstructural analysis SEM fractography turbine blades Summary A blade from the last turbine stage of an aircraft engine failed in service...
Abstract
A turbine blade in an aircraft engine failed, fracturing at the root above the fir tree region. Fractography indicated that a fatigue crack initiated at the trailing edge of the blade and the final fracture occurred when the crack reached critical length. Although the exact cause of crack initiation could not be established, material defects, improper root loading, and high operating temperatures were ruled out. This chapter describes how investigators came to their conclusions and what they learned through visual and SEM examination and qualitative elemental analysis. It includes images of the microstructure and fracture surfaces and explains what some of the details reveal about the failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270025
EISBN: 978-1-62708-301-0
... of fracture surfaces at high magnifications. However, its use in microfractography has become less frequent since the advent of SEM. A failed specimen cannot be directly placed for study in a TEM because bulk metals are not transparent to electrons. A plastic replica of the fracture surface is prepared...
Abstract
This chapter provides an overview of the tools and techniques used to examine failure specimens and the wealth of information that can be obtained from fracture surfaces, cracks, wear patterns, and other such features. It discusses the use of metallography, fractography, and optical and electron microscopy. It presents a number of images recorded using these methods and explains what they reveal about the mode of fracture and the state of the component prior to failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060149
EISBN: 978-1-62708-261-7
... used in conjunction with a microhardness test, a micrograph can be useful in relating microstructure to mechanical properties. Some History The critical factor in the light microscopy of metals is the surface preparation of the specimen. This is the basic insight made by the father...
Abstract
This chapter explains how metallography and hardness testing are used to evaluate the quality and condition of metal products. It also discusses the use of tensile testing, fracture toughness and impact testing, fatigue testing, and nondestructive test methods including ultrasonic, x-ray, and eddy current testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610549
EISBN: 978-1-62708-303-4
... (and comparison with parts that have not failed) Macroscopic examination and analysis and photographic documentation (fracture surfaces, secondary cracks, and other surface phenomena) Microscopic examination and analysis (electron microscopy may be necessary) Selection and preparation of metallographic...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180151
EISBN: 978-1-62708-256-3
... and analysis fracture surfaces, secondary cracks, and other surface phenomena) Microscopic examination and analysis of fracture surfaces Selection, preparation, examination, and analysis of metallographic sections Determination of the actual stress state of the failed component Determination...
Abstract
This appendix focuses on procedures, techniques, and precautions associated with the investigation and analysis of metallurgical failures that occur in service. It describes the steps of an orderly failure analysis from collecting and examining samples to performing mechanical and nondestructive tests, preparing and examining fractographs and micrographs, determining failure mode, writing the report, and developing follow-up recommendations. It also examines the fundamental mechanisms of failure, why they occur, and how to identify them by their characteristic features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630101
EISBN: 978-1-62708-270-9
.... Scanning electron microscopy inspection is typically required to determine the shear direction. The surface of a ductile fracture is not necessarily related to the direction of the principal tensile stress, as it is in a brittle fracture. The characteristic appearance of the surface of a ductile...
Abstract
Ductile fracture results from the application of an excessive stress to a metal that has the ability to deform permanently, or plastically, prior to fracture. Careful examination and knowledge of the metal, its thermal history, and its hardness are important in determining the correct nature of the fracture features. This chapter is a detailed account of the general characteristics and microstructural aspects of ductile fracture with suitable illustrations. It describes some of the complicating factors extraneous to the fracture itself.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220039
EISBN: 978-1-62708-259-4
.... 4.1.2 Surface Preparation Achieving a proper surface for the macrographic examination comprises two steps: cutting and grinding. Sometimes a sample requires cleaning before its preparation (to remove oxidation, etc.). If the underlying surface is of interest (e.g., fracture surfaces), cleaning...
Abstract
This chapter discusses the practices and procedures used to reveal and record macrostructural features such as hardening depth, weld thickness, crack size, porosity, hot folds, and machining and tooling marks. It provides information on sectioning, sample location, orientation, surface grinding, and etching. It describes macrographic etchants and the features they reveal along with common etching problems and how to avoid them. It explains how to evaluate etching results and how they can be improved using remedial processes such as light grinding. It also discusses photographic reproduction, lighting, and image enhancement techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
... on edge, as shown in Chapter 2, “Sample Preparation and Mounting,” in this book, and viewed normal to the xz or yz plane. If the features that are desired to be analyzed are noticeable on the surface of a composite, such as a fracture area, this area is ideally centered in the section that is taken...
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270165
EISBN: 978-1-62708-301-0
... in the overload (slant) region The circumferential crack in the HP filter head was a through crack that was opened for further examination. The fracture surface showed a flat region extending to over 90% of the section thickness, emanating from the inner surface and a slant shear lip region over the rest...
Abstract
Two filtration components installed on a developmental aircraft cracked during pressure impulse testing. Both parts were made from an aluminum alloy, solutionized and aged, and cracked due to fatigue. In both cases, the crack initiated at a transition region on an inner surface and progressed circumferentially outward. Based on these observations and the results of SEM fractography and microstructural analysis, the fatigue cracking can be traced to insufficient fillet radius at the transition zone.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220667
EISBN: 978-1-62708-259-4
... that would completely reconstruct the sampling process is a critical point in any metallographic analysis. It is essential to preserve, in all steps of sample preparation, all information related to exactly where the sample was taken from, which sample surface is closer or farther to the surface...
Abstract
This chapter provides guidelines for conducting metallographic evaluations and offers suggestions on how to effectively report the results. It explains how the approach depends on the objective of the evaluation, which is usually to measure a structural feature, test a hypothesis, or investigate structure-related effects. The chapter addresses each case, tailoring its guidelines and suggestions accordingly.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... are employed: a thin foil or a surface replica. A thin foil is prepared from a bulk sample and prepared to develop a wafer-thin specimen. A replica is prepared from the surface of an etched specimen or fracture surface. The techniques used to prepare these thin foils and replicas are discussed later...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.