Skip Nav Destination
Close Modal
Search Results for
fracture modes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 447 Search Results for
fracture modes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630063
EISBN: 978-1-62708-270-9
... Abstract From a fundamental standpoint, there are only two modes, or ways, in which metals can fracture under single, or monotonic, loads: shear and cleavage. There are fracture modes other than shear and cleavage. These include intergranular and quasi-cleavage fracture modes for single-load...
Abstract
From a fundamental standpoint, there are only two modes, or ways, in which metals can fracture under single, or monotonic, loads: shear and cleavage. There are fracture modes other than shear and cleavage. These include intergranular and quasi-cleavage fracture modes for single-load applications, and fatigue for multiple-load applications. Each of these fracture modes are discussed in this chapter. The factors affecting the ductile brittle relationship are also covered.
Image
in Low Toughness and Embrittlement Phenomena in Steels
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 19.16 Map of fracture modes in hardened steels produced by tensile and bending loads as a function of tempering temperature and steel carbon content. The transition from ductile to brittle intergranular fracture in low-temperature-tempered (LTT) steels at 0.5% C is shown and approaches
More
Image
Published: 01 October 2011
Fig. 16.20 Transgranular fracture modes in body-centered cubic (bcc) crystals. (a) Ductile fracture begins with shear deformation along the diagonal plane, which produces microvoids that eventually lead to fracture. (b) Brittle transgranular fracture (cleavage) occurs by tensile decohesion
More
Image
Published: 01 June 2008
Image
Published: 30 November 2013
Fig. 10 A scanning electron micrograph of a mixed fracture mode from a metal injection molded (MIM) steel. The dimples indicate ductile rupture. The flat features indicate separation of nonfused particles. The circular features on the flat fractures are porosity.
More
Image
Published: 01 September 2008
Fig. 38 SEM micrograph showing a ductile fracture mode observed over the majority of both fracture surfaces. Original magnification: 1000×. Source: Ref 20
More
Image
Published: 01 September 2008
Fig. 39 SEM micrograph showing an intergranular fracture mode, observed around the entire circumference at both fractures in the screw. Structure at top is the base metal; structure at bottom is cadmium plating. Original magnification: 1000×. Source: Ref 20
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
... Abstract This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Image
Published: 01 November 2010
transgranular fracture mode at the surface, transitioning to the bulk intergranular fracture mode. Source: Ref 18
More
Image
Published: 01 December 1989
Fig. 3.18. Fracture-mechanism maps for annealed 2¼Cr-1Mo steel ( Ref 108 ). Above: Fracture modes in temperature-stress space; numbers with data points are values of log t r . Below: Same data plotted differently to show change in fracture mode with t r .
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630101
EISBN: 978-1-62708-270-9
... 6, “Basic Single-Load Fracture Modes,” in this book, ductile fractures are those in which the shear stress exceeds the shear strength before any other mode of fracture can occur. Therefore, the micromechanism of fracture is in the shear direction, but this is not always obvious on macroexamination...
Abstract
Ductile fracture results from the application of an excessive stress to a metal that has the ability to deform permanently, or plastically, prior to fracture. Careful examination and knowledge of the metal, its thermal history, and its hardness are important in determining the correct nature of the fracture features. This chapter is a detailed account of the general characteristics and microstructural aspects of ductile fracture with suitable illustrations. It describes some of the complicating factors extraneous to the fracture itself.
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 64 ASTM B7 low-alloy steel bolt grade. Fracture initiated along threads, with typical and pronounced beach marks (i.e., cyclic fracture propagation) and transgranular fracture mode. (a) Location of bolts in pump coupling. (b) Beach marks showing asymmetrical bending with initiation
More
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture<subtitle>An Introduction</subtitle>
Published: 01 August 2005
Fig. 2.87 Fracture mechanism map for an 80Ni-20Cr solid solution showing regions of fracture modes and lines of equal rupture life. Source: Ref 2.58
More
Image
in Stress-Corrosion Cracking of Nickel-Base Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 5.39 Interrelationships among cathodic current density, grain-boundary sulfur composition, and fracture mode in straining electrode tests of nickel. Source: Ref 5.174
More
Image
Published: 01 September 2008
Fig. 5 Effect of hydrogen content on hydrogen-assisted cracking (HAC) for microvoid coalescence (MVC), quasi-cleavage (QC), and intergranular (IG) fracture modes. Adapted from Beachem. Source: Ref 32
More
Image
Published: 30 November 2013
-corrosion crack. Note the fan-shaped pattern radiating from the origin region in the upper left corner. When viewed under the electron microscope, this type of fracture is likely to reveal a cleavage or quasi-cleavage fracture mode. (b) Fracture surface of a large (~5-¾ × 6 in.) equalizer bar made from D6B
More
Image
Published: 01 November 2012
, this type of fracture is likely to reveal a cleavage or quasi-cleavage fracture mode. Source: Ref 10
More
Image
in Failure of a High-Pressure Turbine Blade in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Image
Published: 01 December 2003
Fig. 2 Mode I tension interlaminar fractures that propagated at various angles to the direction of fiber reinforcement. (a) Fracture between adjacent 0° and 90° plies. (b) Fracture between 45° and –45° plies. 2000×. Source: Ref 1
More
Image
Published: 01 December 2003
Fig. 5 Interlaminar mode II shear fractures that propagated at an angle to the direction of fiber reinforcement. (a) Delamination between 0° and 90° plies. 5000×. (b) Fracture between 45° and –45° plies. 2000×. Source: Ref 1
More
1