1-20 of 245 Search Results for

forging process variables

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... product, and finally the plant environment where the process is being conducted. The “systems approach” in forging allows study of the input/output relationships and the effect of the process variables on product quality and process economics. Figure 2.1 shows the different components of the forging...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040159
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... process understanding and control. In its earlier application, process modeling helped die design engineers to preview the metal flow and possible defect formation in a forging. After the forging simulation is done, the contours of state variables, such as effective strain, effective strain rate...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
... of important inputs for modeling the cold forging process. The process modeling provides extensive information on the forging process. The output of process modeling can be discussed in terms of the metal flow, the distribution and history of state variables, the equipment response during forging...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120033
EISBN: 978-1-62708-269-3
... Abstract This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... , No. 2 , Jan . 1980 , p 60 . 10.1007/BF02833610 In hot impression-die forging, forging load and die stresses are important variables that affect die life and determine the selection of press capacity. During the die design and process planning stage, it is necessary to estimate...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
... ) Interdependence of forging process parameters ( Fig. 2 ) Forging process design task overview ( Fig. 3 ) Relationship between process and machine variables ( Fig. 4 ) Characteristics of forging machines ( Table 4 ) Workability modeling (process maps showing zones of stable flow) of workpiece behavior...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040319
EISBN: 978-1-62708-300-3
... elastic deflection, thus affecting the final tolerances on the part being forged. Variation of process conditions: In practical situations, process variables such as forming pressure, lubrication conditions, billet dimensions, and material properties do not remain constant. These fluctuations affect...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040091
EISBN: 978-1-62708-300-3
.... , Metal Forming: Fundamentals and Applications , ASM International , 1983 . The major process variables involved in forging can be summarized as: (a) the billet material properties, (b) the tooling/dies, (c) tool/workpiece interface conditions, (d) forging equipment, (e) mechanics...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040107
EISBN: 978-1-62708-300-3
... ¯ , the interface friction conditions, and the forging geometry (dimensions, shape) determine (a) the load, L P , at each position of the stroke and (b) the energy, E P , required by the forming process. Fig. 10.1 Relationships between process and machine variables in hot forming process conducted in presses...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040211
EISBN: 978-1-62708-300-3
... interface, the mechanics of plastic deformation, the equipment used, the characteristics of the final product, and finally, the plant environment where the process is being conducted. The “systems approach” in forging allows study of the input/output relationships and the effect of process variables...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.9781627083003
EISBN: 978-1-62708-300-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410247
EISBN: 978-1-62708-280-8
... mold casting, low pressure permanent mold casting, squeeze casting, cast-forge process A 356 T6 Gravity permanent mold casting, low pressure permanent mold casting, cast-forge process A 356 T6 Upper and lower control arms Gravity permanent mold casting, low pressure permanent mold casting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040295
EISBN: 978-1-62708-300-3
... this fatigue analysis method was employed are presented as follows. Several studies have been conducted in an attempt to estimate die life in hot forging [ Liou et al., 1988 ]. The ability to predict die wear allows for the optimization of process variables such that die life is improved...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040247
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the development and use of microstructure models for optimizing superalloy forging operations. It describes how the processes that control grain structure evolution during hot working were used in model formulation and compares predicted microstructures...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040115
EISBN: 978-1-62708-300-3
... of equipment capabilities and characteristics. The equipment, i.e., presses and hammers used in forging, influences the forging process, since it affects the deformation rate and temperature conditions, and it determines the rate of production. The requirements of a given forging process must be compatible...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040141
EISBN: 978-1-62708-300-3
... mechanism. The operational sequence of a horizontal forging machine is illustrated in Fig. 12.15 for the upsetting process: (a) the hot end of the bar is placed into the stationary gripper die against a stop, (b) the moving gripper die closes and the stop retracts, (c) the heading tool begins to deform...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060407
EISBN: 978-1-62708-261-7
... of the material to properly function in the intended application needs to be evaluated carefully. Similar interrelations that are more difficult to characterize exist among the various mechanical and physical properties and variables associated with manufacturing processes. For example, cold drawing a wire...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610549
EISBN: 978-1-62708-303-4
... Abstract This chapters discusses the basic steps in the failure analysis process. It covers examination procedures, selection and preservation of fracture surfaces, macro and microfractography, metallographic analysis, mechanical testing, chemical analysis, and simulated service testing...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
... Abstract This chapter describes cast steel features that may be identified or attributed to component failure during heat treatment or subsequent processing or service, namely porosity (generated by the presence of gas as well as by shrinkage pores), decarburization, cold joint, and inclusions...