Skip Nav Destination
Close Modal
Search Results for
forging design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 571 Search Results for
forging design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040159
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes...
Abstract
This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes the requirements of various forging alloys, the influence of machine operating parameters, and production challenges related to lot tolerances and shape complexity. The chapter also covers the design of finisher dies, the prediction of forging stresses and loads, and the design of preform dies for steel, aluminum, and titanium alloys.
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.22 Flat-track forging. Originally of aluminum design, this 18 kg (40 lb) Ti-6Al-4V structural part was forged from the beta field.
More
Image
Published: 01 September 2008
Image
in Process Modeling in Cold Forging Using Finite-Element Analysis
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Image
in Process Design in Impression-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Image
Published: 01 August 2018
Fig. 11.54 Cross sections of parts produced by closed die forging. Fiber orientation is clearly visible. The fibers are not cut, indicating a good forging design. For improved visualization of the fibers after etching with hot hydrochloric acid, the visibility of the fibers is enhanced either
More
Image
Published: 01 October 2011
Fig. 6.11 Comparison of typical design limits for rib-web structural forgings of (a) aluminum alloys and (b) nickel-base alloys. Dimensions given in millimeters.
More
Image
in Isothermal and Hot-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Fig. 20.12 10,000 ton isothermal forging press, designed, constructed, and operated by Ladish. Courtesy of Ladish Co.
More
Image
in Process Design in Impression-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Fig. 14.4 Comparison of typical design limits for rib-web-type structural forgings of (a) aluminum alloys and (b) nickel-base superalloys (all dimensions are in mm) [ Sabroff et al., 1968 ]
More
Image
in Process Design in Impression-Die Forging
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Fig. 14.19 Preform designs for two example parts. In both examples, (a) forging, (b) cross-sectional area vs. length, (c) and (d) ideal preform, V E and q E , volume and cross section of the finish forging, and V G and q G , volume and cross section of the flash [ Haller 1971 ]
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
... cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design...
Abstract
This article presents six case studies of failures with steel forgings. The case studies covered are crankshaft underfill; tube bending; spade bit; trim tear; upset forging; and avoidance of flow through, lap, and crack. The case studies illustrate difficulties encountered in either cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design, and forging tolerances. Wear, plastic deformation processes, and laws of friction are introduced as a group of subjects that have been considered in the case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280091
EISBN: 978-1-62708-267-9
... Abstract This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping...
Abstract
This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping, the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also discusses the forgeability of alloys, addresses problems and practical issues, and describes the forging of gas turbine disks. On the topic of forming, the chapter discusses the processes involved, the role of alloying elements, and the effect of alloy condition on formability. It addresses practical concerns such as forming speed, rolling direction, rerolling, and heat treating precipitation-hardened alloys. It presents several application examples involving carbide-hardened cobalt-base and other superalloys, and it concludes with a discussion on superplasticity and its adaptation to commercial forging and forming operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... alloy families are forged closer to their melting temperatures (>0.80 T m ) than the titanium alloys (0.6 to 0.7 T m ). The other alloy families referred to here include nickel-base superalloys, which are designed for high-temperature service (650 to 980 °C, or 1200 to 1800 °F). Titanium...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040319
EISBN: 978-1-62708-300-3
... Physical vapor deposition: TiN 23.2.2 Die Deflection in Net Shape Forging The stages of process planning, tool design, and manufacture in net shape forming require not only the use of a highly qualified engineer and sophisticated computer-aided design/computer-aided manufacturing (CAD/CAM...
Abstract
This chapter defines near-net shape forging as the process of forging parts close to their final dimensions such that little machining or only grinding is required as a final step. It then describes the causes of dimensional variations in forging, including die deflection, press deflection, and process inconsistencies, and discusses related innovations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
...-dimensional (3-D) FEM simulations were used to analyze the modified design that fills the dimples of the lower punch completely and at realistic loads. The details of the study can be found in [ Hannan et al., 1999 ]. 18.4.3 Design of Automotive Parts Net shape forging of power steering pinions...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
... ). It also produces a directional variation in strength, ductility, fracture toughness, and fatigue strength. This anisotropy in properties is greatest between the working (longitudinal) direction and the transverse direction. In a properly designed forging, the largest stress should be parallel...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... of press capacity. During the die design and process planning stage, it is necessary to estimate these variables to avoid unexpected die failure and provide for necessary forging load to fill the die cavity. Forging load may be estimated by experience-based values, i.e., by multiplying the plan area...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040211
EISBN: 978-1-62708-300-3
... forces into a variety of shapes. These shapes are usually axisymmetric with relatively small nonsymmetrical features, and, unlike impression-die forging (see Chapter 14, “Process Design in Impression-Die Forging” ), the process does not generate flash. The terms cold forging and cold extrusion...
Abstract
This chapter discusses the process of cold forging and its effect on various materials. It describes billet preparation and lubrication procedures, cold upsetting techniques, and the use of slab analysis for estimating cold forging loads. It likewise describes extrusion processes, explaining how to estimate friction and flow stress and predict extrusion loads and energy requirements. The chapter also discusses the tooling used in cold forging, the parameters affecting tool life, and the relative advantages of warm forging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
... Abstract This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations...
Abstract
This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations, and achievable strengths. It explains how some alloys are hardened through solution strengthening and cold working, while others are strengthened by precipitation hardening. It also describes production and fabrication processes such as melting, casting, rolling, forging, forming, extruding, heat treating, and joining, and includes a section on the causes and effects of corrosion and how they are typically controlled.
1