Skip Nav Destination
Close Modal
By
Omar Maluf, Luciana Sgarbi Rossino, Camilo Bento Carletti, Celso Roberto Ribeiro, Clever Ricardo Chinaglia ...
Search Results for
flux inclusions
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 141 Search Results for
flux inclusions
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030172
EISBN: 978-1-62708-282-2
...-metal contamination, blast residues, flux inclusions, and galvanic attack. corrosion resistance magnesium alloys chemical composition heat treatment grain size cold working heavy-metal contamination blast residues flux inclusions galvanic attack MAGNESIUM AND MAGNESIUM ALLOYS...
Abstract
This chapter discusses the effects of metallurgical factors on the corrosion resistance of magnesium alloys. The factors are chemical composition, heat treating, grain size, and cold-work effects. The chapter describes the causes of corrosion failures in magnesium alloys, namely heavy-metal contamination, blast residues, flux inclusions, and galvanic attack.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140047
EISBN: 978-1-62708-335-5
.... The prevention of inclusions is the product of equipment and practices that minimize oxidation, avoid entrainment, and effectively remove particulate by fluxing reactions or filtration. Degassing with inert (argon) or quasi-inert (nitrogen) gases are only partially effective in the removal of included matter...
Abstract
Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects. Nonmetallic inclusions entrained before solidification influence porosity formation and mechanical properties. This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260119
EISBN: 978-1-62708-336-2
... melting, oxide formation and nonmetallic impurities are quite common. Impurities may appear in the form of liquid and solid inclusions that persist through melt solidification into the casting billet. Fluxing of the melt facilitates the accumulation and separation of such undesirable constituents from...
Abstract
This chapter describes various aspects of the billet making process and how they affect the quality of aluminum extrusions. It begins with an overview of the direct-chill continuous casting technique and its advantages over other methods, particularly for hard aluminum alloys. It then discusses the influence of casting variables, including pouring temperature and cooling rate, and operating considerations such as the make-up of charge materials, fluxing and degassing procedures, and grain refining. The chapter also provides information on vertical and horizontal casting systems, billet homogenization, and the cause of casting defects, including cracking and splitting, segregation, porosity, and grain growth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930197
EISBN: 978-1-62708-359-1
..., nonmetallic inclusions, cracks, and undercuts when welding is restarted. In welds completed without interruption, discontinuities can be detected visually or by nondestructive testing. Inclusions Slag inclusions derived from the flux pool may be found at the weld interface. These inclusions can be best...
Abstract
Weldment failures may be divided into two classes: those identified during inspection and mechanical testing and those discovered in service. Failures in service arise from fracture, wear, corrosion, or deformation. In this article, major attention is directed toward the analysis of service failures. The discussion covers various factors that may lead to the failure of arc welds, electroslag welds, electrogas welds, resistance welds, flash welds, upset butt welds, friction welds, electron beam welds, and laser beam welds.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... welding (SAW) Slag inclusions Incomplete fusion/Incomplete penetration Porosity Flux cored arc welding (FCAW) Slag inclusions Porosity Incomplete fusion/Incomplete penetration Gas metal arc welding (GMAW) Porosity Incomplete fusion/Incomplete penetration Gas tungsten arc welding (GTAW...
Abstract
Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler metals and the types of flaws exhibited by brazed joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
... attached to it. If the solder at the joint region is simply melted without applying a flux, the molten solder metal will form a ball shape and not flow into the joint. Applying a flux causes the molten solder to flow into the joint. The liquid metal appears to be sucked into the joint, and, in fact...
Abstract
Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why manganese is sometimes added to steel and how unintended consequences, such as the development of sulfide stringers, can offset the benefits. It also examines the effect of alloying elements on the iron-carbon phase diagram, particularly their effect on transformation temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220009
EISBN: 978-1-62708-259-4
... balance for this process. Temperature gets sufficiently high for liquid metal to drop through the lower part of the furnace, where it is collected in the hearth. A mixture of the nonreduced impurities and fluxes added to the charge leads to the formation of a liquid slag. Density difference and surface...
Abstract
This chapter describes the basic steps in the steelmaking process. It explains how iron is reduced from ore in the liquid state through the classic blast furnace process and in the solid state by direct reduction. It discusses the conversion of iron to steel and the technological advancements that led from open hearth steelmaking to basic oxygen processes and ultimately the electric arc furnace (EAF). It describes the versatility, efficiency, and scalability of the EAF process and its impact on recycling and sustainability. It explains how EAF refining and deoxidation practices have changed over time, and describes secondary refining processes such as degassing, homogenization, rinsing, and remelting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... is the preferred method for detecting surface-breaking and, under certain circumstances, near-surface flaws in situations where a test material can be magnetized. This method depends on the flaw disrupting the magnetic flux generated along the surface of the weld by a permanent magnet or electromagnets...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders. atomization foundry casting melting furnaces nonferrous casting alloys...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290023
EISBN: 978-1-62708-306-5
... Produce a smooth weld contour Reduce spatter and fume The slag that forms during welding covers the hot weld metal and protects it from the atmosphere. Welding slag consists of the glass-forming components of the flux, as well as inclusions that form in the weld pool, coalesce, rise, and become...
Abstract
Arc welding applies to a large and diversified group of welding processes that use an electric arc as the source of heat to melt and join metals. This chapter provides a detailed overview of specific arc welding methods: shielded metal arc welding, flux cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-GMAW welding, electroslag welding, and electrogas welding. The basic characteristics of gases used for shielding during arc welding are briefly discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270019
EISBN: 978-1-62708-301-0
... Chemical Analysis Chemical analysis of samples from the component provides information regarding any deviation from the standard specifications, compositional inhomogeneities, impurities, inclusions, segregations, and so forth. It also helps in identifying the nature of corrosion products, coatings...
Abstract
This chapter discusses the basic steps of a failure investigation. It explains that the first step is to gather and document information about the failed component and its operating history. It advises investigators to visit the failure site as soon as possible to record damages and collect test specimens for subsequent examination and chemical analysis. It also discusses the role of mechanical property testing, the use of nondestructive evaluation, and the final step of generating a report.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560309
EISBN: 978-1-62708-291-4
... is dispersed. The inclusions are composed of primary dendrites of iron oxide (FeO— wüstite ) and a eutectic of iron oxide and iron silicate (2FeO·SiO 2 — fayalite ). The eutectic melts at ~1180 °C and then can dissolve iron oxide; as a consequence it acts as a flux when it is expelled onto the joint surfaces...
Abstract
This chapter examines the effects of welding on the structure of metal, particularly the changes induced in the isothermal regions adjacent to the weld. It presents more than 150 images identifying structures and features associated with fusion and solid-state welding processes, including electroslag, TIG, gas, electron-beam, and arc welding as well as vacuum diffusion, forge, friction, electrical-resistance, and explosive welding. It also discusses the effect of welding temperature, pressure, and composition on the transformations that occur in and around the weld, and it includes a short section on brazing and braze welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... concentration in excess of about 5 ppm has been associated with flaking, especially in heavy sections and high carbon steels. Hydrogen flakes ( Fig. 3 ) are small cracks produced by hydrogen that has diffused to grain boundaries and other preferred sites, for example, at inclusion/matrix interfaces. However...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.9781627083591
EISBN: 978-1-62708-359-1
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230105
EISBN: 978-1-62708-351-5
... Soldering atmosphere Relative thermal conductivity Carbon dioxide 0.62 Argon 0.68 Nitrogen 0.99 Air 1 Helium 5.8 Hydrogen 6.9 Selected self-fluxing alloys based on copper-(silver)-phosphorus and their melting ranges Table 3.5 Selected self-fluxing alloys based on copper...
Abstract
This chapter discusses joining atmospheres that are used for brazing, along with their advantages and disadvantages. It discusses the processes, advantages, and disadvantages of chemical fluxing, self-fluxing, and fluxless brazing. Information on stop-off compounds that are considered as the antithesis of fluxes is also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410163
EISBN: 978-1-62708-265-5
... Inclusions and chemical segregation are factors in many process-induced failures involving steel parts. Inclusions are nonmetallic compounds introduced during production; segregation is a type of chemical partitioning that occurs during solidification. This chapter discusses the origins...
Abstract
Inclusions and chemical segregation are factors in many process-induced failures involving steel parts. Inclusions are nonmetallic compounds introduced during production; segregation is a type of chemical partitioning that occurs during solidification. This chapter discusses the origins of segregation and inclusions and their effect on the mechanical properties and microstructure of steel. It explains how to identify various types of inclusions and characteristic segregation patterns, such as banding. It also describes the effect of hot work processing on solidification structure and the chemical variations produced by interdendritic segregation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
... Abstract This chapter describes cast steel features that may be identified or attributed to component failure during heat treatment or subsequent processing or service, namely porosity (generated by the presence of gas as well as by shrinkage pores), decarburization, cold joint, and inclusions...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310201
EISBN: 978-1-62708-286-0
.... When austenite freezes, it strongly rejects sulfur to the intergranular areas, where it forms weak films. This is solved by balancing the composition so that alloys solidify first as ferrite, which does not reject the sulfur, forcing it to precipitate as sulfide inclusions within the grains...
Abstract
This chapter provides a basis for understanding the influence of stainless steel alloy composition and metallurgy on the welding process, which involves complex dynamics associated with melting, refining, and thermal processing. It begins with an overview of the welding characteristics of the categories of stainless steels, namely austenitic, duplex, ferritic, martensitic, and precipitation-hardening stainless steels. This is followed by a discussion of the selection criteria for materials to be welded. Various welding processes used with stainless steel are then described. The chapter ends with a section on some of the practices to ensure safety and weld quality.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... reaction takes place in a blast furnace, shown schematically in Fig. 2 , which is essentially a tall, hollow, cylindrical structure with a steel outer shell lined on the inside with refractory brick. The raw materials for a blast furnace charge are iron ore, coking coal, and fluxes, mainly limestone. Coke...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930365
EISBN: 978-1-62708-359-1
...%). Low operator factor. Equipment cost is low and spare parts are minimal. Welding speeds are generally low. Housekeeping is required to deslag and dispose of flux and electrode stubs. Strongly dependent on the skill of the welder. Lack of fusion or slag inclusions are potential problems. The relatively...
Abstract
This appendix provides reference tables listing weldability of cast irons, steels, and nonferrous metals. A process selection table for arc welding carbon steels is included, and recommended preheat and interpass temperature tables are also presented. This appendix includes information on qualification codes and standards.
1