Skip Nav Destination
Close Modal
Search Results for
flaw detection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 172
Search Results for flaw detection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 April 2013
Image
Published: 01 April 2013
Fig. 7 Principle of ultrasonic flaw detection for cold drawn wires using three detection mode probes. Source: Ref 2
More
Image
Published: 01 April 2013
Fig. 11 Eddy current flaw detection method for cold-drawn hexagonal bars. (a) Location of artificial flaws ranging from 0.5 to 19 mm (0.020 to ¾ in.) below probe position. (b) Schematic of setup for standard voltage comparison (encircling coil) method (left) and plot of signals obtained
More
Image
Published: 01 April 2013
Fig. 15 Schematic of eddy current flaw detection system used to inspect sheared bolt illustrated in Fig. 14 . Source: Ref 2
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720183
EISBN: 978-1-62708-305-8
... Abstract Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface...
Abstract
Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface flaw detection techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720393
EISBN: 978-1-62708-305-8
... evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography...
Abstract
Fabricated powder metallurgy (P/M) parts are evaluated and tested at several stages during manufacturing for part acceptance and process control. The various types of tests included are dimensional evaluation, density measurements, hardness testing, mechanical testing, and nondestructive testing. This chapter is a detailed account of these testing methods. It describes the four most common types of defects in P/M parts, namely ejection cracks, density variations, microlaminations, and poor sintering. The chapter discusses the capabilities and limitations of various nondestructive evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography, computed tomography, gamma-ray density determination, and ultrasonic techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720321
EISBN: 978-1-62708-305-8
... Abstract This chapter focuses on the inspection of steel bars for the detection and evaluation of flaws. The principles involved also apply, for the most part, to the inspection of steel wire. The nondestructive inspection methods discussed include magnetic particle inspection, liquid penetrant...
Abstract
This chapter focuses on the inspection of steel bars for the detection and evaluation of flaws. The principles involved also apply, for the most part, to the inspection of steel wire. The nondestructive inspection methods discussed include magnetic particle inspection, liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection. Eddy current and magnetic permeability are also covered.
Image
Published: 01 April 2013
Fig. 4 Schematic showing position of probe relative to flaw inside of bar and resulting wave display obtained for two methods of ultrasonic flaw detection. (a) Normal beam method. (b) Angle beam method. Wave display nomenclature: T, transmit pulse; S, surface reflection echo; F 1 , flaw echo
More
Image
in Liquid Penetrant, Magnetic Particle, and Eddy-Current Inspection
> Inspection of Metals: Understanding the Basics
Published: 01 April 2013
Fig. 23 Types and applications of coils used in eddy current inspection. (a) Probe type coil applied to a flat plate for crack detection. (b) Horseshoe shape, or U-shape, coil applied to a flat plate for laminar flaw detection. (c) Encircling coil applied to a tube. (d) Internal, or bobbin
More
Image
Published: 01 April 2013
Fig. 10 Plot of eddy current signal output versus flaw depth to gage detectability of flaws in cold drawn bars. Source: Ref 2
More
Image
Published: 01 April 2013
Fig. 18 Coil assembly used for the simultaneous detection of flaws and of variation in composition, structure, and hardness in steel bars. Dimensions in inches. Source: Ref 1
More
Image
Published: 01 April 2013
Fig. 7 Schematic of flaws and their x-ray images. Defect types that can be detected by x-ray radiography are those that change the attenuation of the transmitted x-rays. Source: Ref 4
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720267
EISBN: 978-1-62708-305-8
... Abstract Ultrasonic inspection is a nondestructive method in which beams of high frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This chapter begins with an overview...
Abstract
Ultrasonic inspection is a nondestructive method in which beams of high frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This chapter begins with an overview of ultrasonic flaw detectors, ultrasonic transducers, and search units and couplants. It then discusses the principles of operation, presentation, and interpretation of data of pulse echo and transmission methods. This is followed by sections providing information on general characteristics of ultrasonic waves and the factors influencing ultrasonic inspection. The advantages, disadvantages, and applications of ultrasonic inspection are finally compared with other methods of nondestructive inspection of metal parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... Abstract In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720345
EISBN: 978-1-62708-305-8
... applications of the nondestructive inspection of tubular products are: Detection and evaluation of flaws Sorting of mixed stock Measurement of dimensions Comparative measurement of specific physical and mechanical properties Of these, the primary application is the detection and evaluation...
Abstract
Wrought tubular products are nondestructively inspected chiefly by eddy current techniques (including the magnetic flux leakage technique) and by ultrasonic techniques. The methods discussed in this chapter include eddy current inspection, flux leakage inspection, ultrasonic inspection, magnetic particle inspection, liquid penetrant inspection, and radiographic inspection of resistance welded tubular products, seamless steel tubular products, and nonferrous tubular products. This chapter discusses the fundamental factors that should be considered in selecting a nondestructive inspection method and in selecting from among the commercially available inspection equipment. The factors covered are product characteristics, nature of the flaws, extraneous variables, rate of inspection, end effect, mill versus laboratory inspection, specification requirements, equipment costs, and operating costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... of the inherent unreliability of many techniques, a wide tolerance between critical defect size and flaw detection threshold is needed in manufacturing. However, the incorporation of fitness-for-purpose philosophies into quality control is having the effect of reducing this tolerance and placing greater emphasis...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930057
EISBN: 978-1-62708-359-1
... welded pipe and tubing because eddy currents are relatively insensitive to flaws that do not extend to the surface or into the near-surface layer. Magnetic particle inspection and liquid penetrant inspection are not suitable for detecting subsurface gas porosity. These methods are restricted...
Abstract
Discontinuities are interruptions in the desirable physical structure of a weld. This article describes the types of weld discontinuities that are characteristic of the principal welding processes. Discontinuities covered are metallurgical discontinuities, discontinuities associated with specialized welding processes, and base metal discontinuities. In addition, information on the common inspection methods used to detect these discontinuities is provided.
Image
Published: 01 April 2013
Fig. 6 Dual set of six circumferentially mounted probes used to ultrasonically detect flaws in cold drawn hexagonal bars. (a) Normal beam method to detect flaws deep inside bar. (b) Angle beam method to detect surface and near-surface flaws. Source: Ref 2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270019
EISBN: 978-1-62708-301-0
.... Nondestructive evaluation (NDE) is employed to detect at an early stage subsurface flaws and internal flaws in the component, their type, size, orientation, and location. In a failed component, there may still be flaws similar to the one that was primarily responsible for the failure. These flaws can be detected...
Abstract
This chapter discusses the basic steps of a failure investigation. It explains that the first step is to gather and document information about the failed component and its operating history. It advises investigators to visit the failure site as soon as possible to record damages and collect test specimens for subsequent examination and chemical analysis. It also discusses the role of mechanical property testing, the use of nondestructive evaluation, and the final step of generating a report.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500301
EISBN: 978-1-62708-317-1
... be derived in real time from various sensor outputs. flaw detection quality control sensors sheet metal forming IN SHEET METAL FORMING, the quality of formed parts is affected by variables such as sheet material, die material and surface, lubrication, and press characteristics. Therefore...
Abstract
This chapter discusses the types of sensors used in sheet forming operations and the information they provide. It explains how force sensors protect equipment from overloads due to tool wear, friction, and misfeeds, how displacement and proximity sensors help to prevent die crashes, how acoustic emission, ultrasonic, and eddy current sensors detect tool breakage and part defects such as cracks, and how roller ball and optical sensors measure material flow. It also discusses the role of draw-in, wrinkle, oil-monitoring, and vision sensors and explains how material properties can be derived in real time from various sensor outputs.
1