Skip Nav Destination
Close Modal
Search Results for
finite-element analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 228 Search Results for
finite-element analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... a variety of application examples. closed-die forging finite-element analysis impression-die forging microstructure process modeling 16.1 Introduction Development of finite-element (FE) process simulation in forging started in the late 1970s. At that time, automatic remeshing...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
... finite-element analysis friction process modeling 18.1 Introduction The finite-element method (FEM) is one of the numerical techniques used for solving differential equations governing engineering problems. This method has been applied to various engineering processes, including metal forming...
Image
Published: 01 January 2022
Fig. 5.9 Finite element analysis overview. CAD, computer-aided design; FEA, finite element analysis
More
Image
Published: 01 March 2006
Fig. 8.23 Comparison of strains from elastoplastic finite-element analysis and strains from the generalized notch equation. Source: Ref 8.20
More
Image
Published: 01 August 2012
Fig. 4.4 Finite-element-analysis-predicted geometry and thickness distribution in the part after each deformation stage. Source: Ref 4.1
More
Image
Published: 01 August 2012
Fig. 4.5 Geometry of the new part (part B) used in the finite-element analysis study (blank thickness: 2.15 mm, or 0.085 in.). Source: Ref 4.6
More
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.9 Finite-element analysis predictions on shape distortion for 10 mm (0.4 in.) right circular cylinders during sintering at 1390 °C (2535 °F). Half of the cylinder is shown for the initial shape at the start and after hold times of 0, 2, and 4 h. Source: Chung et al. ( Ref 6 )
More
Image
Published: 01 February 2005
Image
Published: 01 April 2004
Fig. 5.29 Finite-element analysis prediction of the geometry of a ceramic-metal brazed joint, at its periphery, at the solidus temperature of the filler alloy and on cooling to room temperature
More
Image
Published: 01 January 2022
Fig. 6.59 Process engineering highlights. FEA, finite element analysis; NDT, nondestructive testing
More
Image
Published: 01 August 2012
Fig. 8.30 Thickness distribution predicted by the finite element analysis simulations. Source: Ref 8.18
More
Image
Published: 01 March 2006
Fig. 8.21 Comparison of results from finite-element calculations and Neuber analysis. Source: Ref 8.21
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500051
EISBN: 978-1-62708-317-1
... Abstract This chapter discusses the use of modeling and simulation technology in the development of sheet metal forming processes. It describes the five major steps involved in finite-element analysis and the various ways functions of interest can be approximated at each point or node...
Abstract
This chapter discusses the use of modeling and simulation technology in the development of sheet metal forming processes. It describes the five major steps involved in finite-element analysis and the various ways functions of interest can be approximated at each point or node in a finite-element mesh. It explains how to obtain input data, what to expect in terms of output data, and how to predict specific types of defects. In addition, it presents several case studies demonstrating the use of finite elements in blanking and piercing, deep drawing of round and rectangular cups, progressive die sequencing, blank holder force optimization, sheet hydroforming, hot stamping, and springback and bending of advanced high-strength steels. It also discusses the factors that affect the accuracy of finite element simulations such as springback, thickness variations, and nonisothermal effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400105
EISBN: 978-1-62708-316-4
... of key process parameters including the draw ratio, material properties, geometry, interface conditions, equipment operating speed, and tooling. It then walks through the steps involved in predicting stress, strain, and punch force using the slab method and finite element analysis and presents...
Abstract
This chapter provides a detailed analysis of the deep drawing process. It begins by explaining that different areas of the workpiece are subjected to different types of forces and loads, equating to five deformation zones. After describing the various zones, it discusses the effect of key process parameters including the draw ratio, material properties, geometry, interface conditions, equipment operating speed, and tooling. It then walks through the steps involved in predicting stress, strain, and punch force using the slab method and finite element analysis and presents the results of simulations conducted to assess the influence of blank diameter, thickness, and holding force as well as strain-hardening and strength coefficients. It also discusses the cause of defects in deep drawn rectangular cups and presents the case study of a deep drawn rectangular cup made from an aluminum blank.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540373
EISBN: 978-1-62708-309-6
... Abstract This appendix presents a close-form solution to determine the stress distribution around a hole of any shape or size in a strip of any material of any width. It also compares the close-form equation to classical solutions and the results of finite element analysis, demonstrating near...
Abstract
This appendix presents a close-form solution to determine the stress distribution around a hole of any shape or size in a strip of any material of any width. It also compares the close-form equation to classical solutions and the results of finite element analysis, demonstrating near perfect matches in each case.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500073
EISBN: 978-1-62708-317-1
... Abstract This chapter presents two case studies; one demonstrating the use of finite-element analysis (FEA) in the design of a progressive die forming operation, the other explaining how software simulations helped engineers reduce thinning and eliminate cracking and deformation observed...
Abstract
This chapter presents two case studies; one demonstrating the use of finite-element analysis (FEA) in the design of a progressive die forming operation, the other explaining how software simulations helped engineers reduce thinning and eliminate cracking and deformation observed in clutch hubs formed using a three-step transfer die process. It also discusses the role of FEA and commercial software in the design of progressive dies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500133
EISBN: 978-1-62708-317-1
... Abstract Hot stamping is a forming process for ultrahigh-strength steels (UHSS) that maximizes formability while minimizing springback. This chapter covers several aspects of hot stamping, including the methods used, the effect of process variables, and the role of finite-element analysis...
Abstract
Hot stamping is a forming process for ultrahigh-strength steels (UHSS) that maximizes formability while minimizing springback. This chapter covers several aspects of hot stamping, including the methods used, the effect of process variables, and the role of finite-element analysis in process development and die design. It also discusses heating methods, cooling mechanisms, and the role of coatings in preventing oxidation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500157
EISBN: 978-1-62708-317-1
... bulging. It identifies the factors that influence part quality and explains how finite-element analysis can be used to optimize hydroforming operations. It also discusses the economics of sheet hydroforming and presents several application examples. sheet bulging sheet hydroforming tool design...
Abstract
This chapter describes a sheet metal forming method, called hydroforming, that uses pressurized liquid and a shaped punch or die. It discusses the advantages and disadvantages of the two approaches, the effect of process variations, and tooling modifications intended to reduce sheet bulging. It identifies the factors that influence part quality and explains how finite-element analysis can be used to optimize hydroforming operations. It also discusses the economics of sheet hydroforming and presents several application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320049
EISBN: 978-1-62708-332-4
... deteriorate because of prolonged exposure to the environment. The assumption made in the analysis is approximate. Geometry changes that can cause stress concentration affect the assumed value of the yield stress. Even the failure criteria assumptions and the finite element analysis (FEA) of complex...
Abstract
This chapter provides an overview of how the disciplines of design, material, and manufacturing contribute to engineering for functional performance. It describes the interaction of product designers and casting engineers in product development. It discusses the consequences of component failure, uncertainty in data and assumptions, and selection of the factor of safety. The chapter also presents an overview of the functional requirements for product performance and provides an overview of product design development. It also presents a partial list of the different tests that are performed on prototypes and examples of product testing. The chapter describes the requirements of a traceability system.
Image
Published: 01 January 2022
Fig. 5.22 Product design development procedure. DFMEA, design failure mode and effects analysis; FEA, finite element analysis; IGES, initial graphics exchange specification; STL, standard triangle language
More
1