1-20 of 250 Search Results for

filler alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
... alloys; and iron-, nickel- and cobalt-base filler metals. cast corrosion resistant alloys cast nickel alloys chemical composition cobalt-base alloys filler metals heat-resistant alloys nickel alloys oxide-dispersion-strengthened alloys wrought iron alloys wrought stainless steel...
Image
Published: 01 July 1997
Fig. 8 Relative crack sensitivity ratings of selected aluminum (base alloy/filler alloy) combinations More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930283
EISBN: 978-1-62708-359-1
... properties that affect welding, namely oxide characteristics; the solubility of hydrogen in molten aluminum; and its thermal, electrical, and nonmagnetic characteristics. The article addresses the primary factors commonly considered when selecting a welding filler alloy, namely ease of welding or freedom...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870161
EISBN: 978-1-62708-299-0
... of weldments in aluminum alloys is affected by the alloy being welded and by the filler alloy and welding process used. Galvanic cells that cause corrosion can be created because of corrosion potential differences among the base (parent) metal, the filler metal, and the heat-affected regions where...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820143
EISBN: 978-1-62708-339-3
... Behavior of Aluminum Alloy Weldments Galvanic Effects The resistance to corrosion of weldments in aluminum alloys is affected by the alloy being welded and by the filler alloy and welding process used. Galvanic cells that cause corrosion can be created because of corrosion potential differences...
Image
Published: 01 December 2004
Fig. 8.13 Notch-yield ratio versus tensile yield strength for welds in aluminum alloy castings for combinations of casting alloys and filler alloys (middle number) More
Image
Published: 01 December 2004
Fig. 8.12 Rankings of notch toughness of welds in aluminum casting alloys based upon notch-yield ratio for combinations of casting alloys and filler alloys (middle number) More
Image
Published: 01 December 2004
Fig. 8.17 Notch-yield ratio versus tensile yield strength for welded aluminum alloy castings at –320 °F (–196 °C) for combinations of casting alloys and filler alloys (middle number) More
Image
Published: 01 April 2004
Fig. 5.29 Finite-element analysis prediction of the geometry of a ceramic-metal brazed joint, at its periphery, at the solidus temperature of the filler alloy and on cooling to room temperature More
Image
Published: 01 August 2005
Fig. 2.28 Effect of impurity elements on the impact strength of joints made in mild steel using an Ag-Cu-Zn-Cd filler alloy. Adapted from Boughton and Sloboda [1970] More
Image
Published: 01 August 2005
Fig. 7.20 Influence of the brazing atmosphere on the shear strength of ZrO 2 /mild steel joints made with Ag-Cu-3Ti filler alloy. Adapted from Weise, Malikowski, and Krappitz [1989] More
Image
Published: 01 July 1997
Fig. 6 Inverted tee-joint fillet weld weldability test data. Shaded bars indicate welds made with commercial filler alloys. Black bars indicate welds made with base metal strips. Source: Ref 6 More
Image
Published: 01 August 1999
Fig. 2 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a one-year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas More
Image
Published: 01 December 2006
Fig. 2 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a one-year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas More
Image
Published: 01 December 2015
Fig. 3 Welded assemblies of aluminum alloy 7005 with alloy 5356 filler metal after a 1 year exposure to seawater. (a) As-welded assembly shows severe localized corrosion in the HAZ. (b) Specimen showing the beneficial effects of postweld aging. Corrosion potentials of different areas More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230143
EISBN: 978-1-62708-351-5
... to Alumina by Adding Carbon Fibres , J. Mater. Sci. , Vol 32 , p 5321 – 5333 10.1023/A:1018666827969 4.1.5 Filler Metal Partitioning 4.2.1 Controlled Expansion Materials 4.2.1.1 Iron-Nickel Alloys 4.2.1.3 Copper-Surface Laminates 4.2.2 Interlayers 4.2.1.4 Composite Materials...
Image
Published: 01 July 1997
Fig. 3 Microstructures of alloy 400 (UNS N04400) welded with filler metal 60. (a) As welded; cyanide persulfate etchant, 70x. (b) Welded, plus 20% cold reduction, plus anneal at 871 °C (1600 °F) 2 h; cyanide persulfate etchant, 150x. Source: Ref 4 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440145
EISBN: 978-1-62708-352-2
... Copper-Molybdenum and Copper-Tungsten Alloys 4.1.5 Filler-Metal Partitioning 4.2.1 Controlled Expansion Materials 4.2.4 The Role of Fillets 4.3 Constraints Imposed by the Components and Solutions 4.2.3 Compliant Structures 4.2.2 Interlayers 4.2.1.3 Copper-Surface Laminates 4.2.1.4...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030112
EISBN: 978-1-62708-282-2
... IT IS NOT UNUSUAL to find that, although the wrought form of a metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not. Further, welds can be made with or without the addition of filler metal. However, there are also many instances in which the weld exhibits corrosion...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230221
EISBN: 978-1-62708-351-5
... on the shear strength of ZrO 2 /mild steel joints made with Ag-Cu-3Ti filler alloy. Adapted from Weise, Malikowski, and Krappitz [1989] Fig. 7.21 Reduction in the thickness of the reaction layer formed by the addition of niobium to the Ag-Cu-5Ti braze wetted onto aluminum nitride under similar...