Skip Nav Destination
Close Modal
Search Results for
filament-wound preforms
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25 Search Results for
filament-wound preforms
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860001
EISBN: 978-1-62708-338-6
... oil platform drill risers, high-speed rotors, and filament-wound preforms. composite structural analysis deep sea oil platform drill risers filament winding filament winding machine filament-wound preforms high-speed rotors machine control pipes pressure vessels Introduction...
Abstract
Most filament winding machines now have computer controls and at least three axes. Winding with four axes is increasingly common because the shapes of the products have evolved to include more complexity. The automation used on the winding machine and ancillary components does not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea oil platform drill risers, high-speed rotors, and filament-wound preforms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860095
EISBN: 978-1-62708-338-6
... Abstract The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special...
Abstract
The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special characteristics of composites. This chapter describes suitable static mechanical test techniques for characterizing laminated composite materials. The approach is to provide recommended techniques, based on consensus opinions of fabricators and users of filament-wound composites, and to survey available techniques that have been used successfully in the field. The chapter describes the effects of various factors on the properties of composite constituents, including fibers, resins, and unidirectional plies. Some aspects of specimen selection are also described. The chapter provides information on pressure bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
... for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion. continuous-fiber composites filament winding liquid molding...
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.9781627083386
EISBN: 978-1-62708-338-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
...-fiber composites. Fiberglass filament-wound self-contained underwater breathing apparatus tanks are another example of composites improving the marine industry. Lighter tanks can hold more air yet require less maintenance than their metallic counterparts. Jet skis and boat trailers often contain glass...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... in casting foundries. The part is not wetted or chemically attacked by the molten aluminum. The processing approach involves the application of a water-based ceramic slurry onto a mandrel that is filament wound with SiC fiber. The green preform is nitride bonded (thermally treated in a nitrogen atmosphere...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
..., or textile techniques such as weaving or braiding can be used to form a near-net preform. To form unidirectional prepreg, tows are precoated with the interfacial protection system and filament wound on a drum, which can be prepregged with the ceramic matrix precursor material or held together with a fugitive...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... composite products. E-glass is a low-cost, high-density, low-modulus fiber that has good corrosion resistance and good handling characteristics. S-2 glass was developed in response to the need for a higher-strength fiber for filament-wound pressure vessels and solid rocket motor casings. Although more...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780064
EISBN: 978-1-62708-281-5
... the resin has cured, the filament-wound part is removed from the mandrel and machined or assembled as required. Fig. 19 Filament winding Applications for filament-wound composites include gasoline storage tanks, septic tanks, large-diameter drainage pipes, chemical storage systems...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts and includes a discussion on materials and process selection methodology for plastics. The discussion covers the primary plastic processing methods and how each process influences part design and the properties of the plastic part. It also includes a brief description of functional requirements in process selection; an overview of various process effects and how they affect the functions and properties of the part; and the selection of processes for size, shape, and design detail factors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870031
EISBN: 978-1-62708-314-0
... of the forehearth, cooling the filaments with water, and applying a chemical size. The filaments are gathered and wound into a package. The production process can be broken down into five basic steps: batching, melting, fiberization, coating, and drying/packaging. Batching Although a viable commercial glass...
Abstract
This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as physical and mechanical property data for commercially important high-strength fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
.... An organic fugitive binder, such as an acrylic adhesive, is used to maintain the fiber spacing and alignment once the preform is cut from the mandrel. In this method, shown in Fig. 33.15 , the fibers are wound onto a foil-covered rotating drum, oversprayed with resin, and then the layer is cut from the drum...
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... of aluminum foil on a mandrel, followed by filament winding the boron fiber over the foil in a collimated manner. An organic fugitive binder, such as an acrylic adhesive, was used to maintain the fiber spacing and alignment once the preform was cut from the mandrel. In this method, often called the green...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
... nonferrous alloy, and the reinforcement consists of high-performance carbon, metallic, or ceramic additions. Reinforcements, either continuous or discontinuous, may constitute from 10 to 70 vol% of the composite. Continuous fiber or filament (f) reinforcements include graphite, silicon carbide (SiC), boron...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030137
EISBN: 978-1-62708-349-2
..., but composites having high fiber volumes or parts that are filament wound can be a challenge, and the composite may need to be sectioned at a greater angle to increase the interlayer area. This can sometimes make the determination of the number of plies easier and also help in the identification of the fiber...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This chapter describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220047
EISBN: 978-1-62708-341-6
... be rated accordingly. When coil impedances are high, the coil can be connected directly across the power lines. The basic line-frequency system ( Fig. 4.4 ) consists of a tapped transformer primary with the secondary wound to provide approximately the voltage required at the coil. The primary taps...
Abstract
Besides the induction coil and workpiece, the induction generator (source of ac power) is probably the most important component of an overall induction heating system. Such equipment is typically rated in terms of its frequency and maximum output power (in kilowatts). This chapter addresses the selection of power supplies in terms of these two factors as well as the operational features of different types of sources. The six different types of power supplies for induction heating applications covered in this chapter are line-frequency supplies, frequency multipliers, motor-generators, solid-state (static) inverters, spark-gap converters, and radio-frequency power supplies. The chapter discusses the design and characteristics of each of the various types of power supplies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... Compressive modulus, msi 1.1 2.4 3.0 4.2 Source: Ref 7 Higher-strength glass fiber parts are also fabricated by processes such as filament winding and pultrusion. The properties of filament-wound and pultruded parts are compared in Table 14.7 . In filament winding, rovings of continuous...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
.... For more complex parts, preforms of glass fiber can be fabricated ahead of time and then placed in the tool for cure. Compression Molding Compounds Compression Molding Compounds usually consist of phenolics, but alkyds and epoxies are also available. A typical compound might contain 40 percent glass...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220281
EISBN: 978-1-62708-341-6
... assembly but is used solely as a means of supplying heat to a plastic preform which is to be shaped. As an example, catheters for medical treatment are formed of inert plastic tubing and must have specific shapes at their ends so that they can be coupled to intravenous or similar types of apparatus...
Abstract
Induction heating has found widespread use as a method to raise the temperature of a metal prior to forming or joining, or to change its metallurgical structure. However, induction heating has specialized capabilities that make it suitable for applications outside of metal treatment and fabrication. This chapter summarizes some of the special applications of induction heating, including those in the plastics, packaging, electronics, glass, chemical, and metal-finishing industries. The chapter concludes with a discussion of the application of induction heating for vacuum processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230163
EISBN: 978-1-62708-298-3
... or extruded filaments. A second attractive feature of this composite system is that both components achieve substantial ductility in the 450 to 750 °C (840 to 1380 °F) temperature range. This behavior means that composite and component fabrication may be accomplished using normal metalworking techniques...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860413
EISBN: 978-1-62708-348-5
... of the reinforcing fiber over a mandrel to form a filament-wound structure. A third construction method, in which continuous or discontinuous fibers of random orientation reinforce molded plastic structures, has aroused interest because of its lower cost. Conventional sand-and-gravel concretes are the only aggregate...
Abstract
Composite systems for cryogenic applications are discussed in this chapter. This chapter emphasizes filamentary-reinforced composites because they are the most widely used composite materials. It begins with a discussion on the approach to designing and fabricating with low-pressure laminate composites. This is followed by a section providing an overview of the materials in modern cryogenic technology. Then, the chapter describes the effect of cryogenic temperatures on materials properties; it also introduces the various joining techniques developed for composite materials. The effects of radiation on the properties of the materials are covered as well as the processes involved in testing laminates at cryogenic temperatures. Finally, the chapter provides information available on concrete aggregate composites.
1